Overview of Clinical and Post-Mortem Data Elements in the Religious Orders Study

> David A. Bennett, MD Rush Alzheimer's Disease Center Rush University Medical Center Chicago, IL

Psychometric Workshop University of California, Santa Cruz; Santa Cruz, CA August 25, 2008

Disclosure:

Funding for this conference was made possible, in part by Grant R13AG030995 from the National Institute on Aging. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

Religious Orders Study Participants

Rush University Medical Center

Neelum Aggarwal, MD Zoe Arvanitakis, MD Lisa Barnes, PhD Patricia Boyle, PhD Aron Buchman, MD Denis Evans, MD Debra Fleischman, PhD Jeremiah Kelly, MD Sue Leurgans, PhD Carlos Mendes de Leon, PhD Julie Schneider, MD Raj Shah, MD Robert Wilson, PhD

University of Pennsylvania Steven Arnold, MD University of British Columbia William Honer, MD **Drexel University** Jonathan Nissanov, PhD University of California, Davis Laurel Beckett, PhD University of California, San Diego Yan Li, PhD Illinois Institute of Technology Konstantinos Arfanakis, PhD Harvard University Philip De Jager, MD, PhD

RADC Staff

National Institute on Aging Grants: P30AG10161; R01AG15819; R01AG24480, R01AG24871, K08AG0084; K23AG23040; K23AG23675 Alzheimer's Association; Illinois Department Public Health An important scientific innovation rarely makes its way gradually winning over and converting its opponents...What does happen is that its opponents gradually die out and the growing generation is familiarized with the idea from the beginning. An important scientific innovation rarely makes its way gradually winning over and converting its opponents...What does happen is that its opponents gradually die out and the growing generation is familiarized with the idea from the beginning.

Max Planck

The philosophy of physics

Francis Harry Compton Crick 1916 - 2004

What Mad Pursuit: A Personal View of Science. Basic Books, New York, 1988

Francis Harry Compton Crick 1916 - 2004

Some scientists work so hard there is no time left for serious thinking.

> What Mad Pursuit: A Personal View of Science. Basic Books, New York, 1988

In some sciences accurate measurement is possible and important, in others it is difficult to find anything to measure which appears to have a fundamental bearing on the problem.

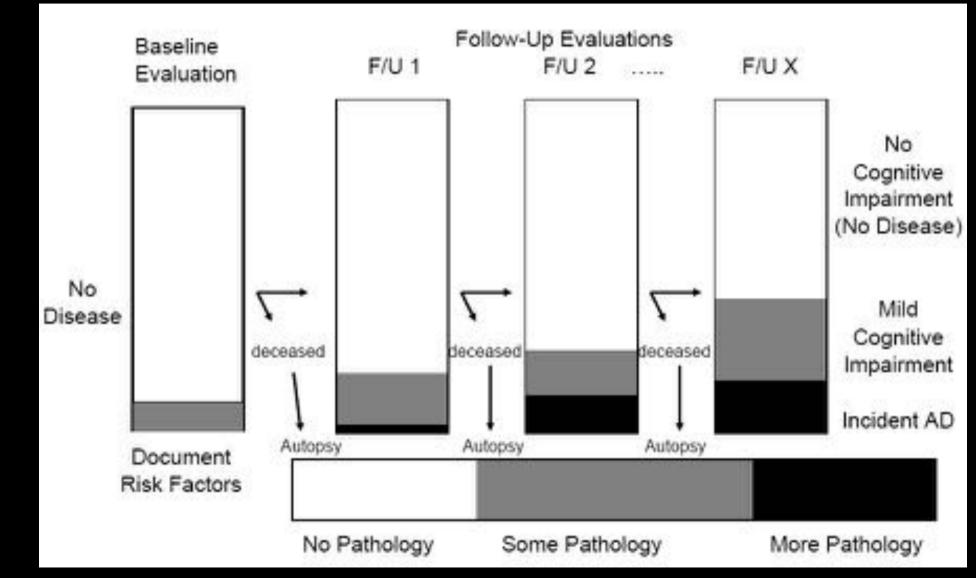
Sir George Thomson The Inspiration of Science, 1968 The scientist is not a person who gives the right answers, he's one who asks the right questions.

Claude Lévi-Strauss Le Cru et le cuit, 1964

Objectives:

Review clinical data collection elements

Cognitive function testsClinical diagnoses


Review post-mortem data collection elements

AD pathology
 Cerebrovascular disease
 Lewy body disease

Objectives:

Review clinical data collection elements Cognitive function tests Clinical diagnoses Review post-mortem data collection elements AD pathology Cerebrovascular disease Lewy body disease

The Rush Memory and Aging Project: Study Design and Baseline Characteristics of the Study Cohort

Bennett DA, et al. Neuroepidemiology 2005;25:163-175.

Religious Orders Study: Participating Sites

Cost-Efficient Operation

>2,300 participants

 \geq Rolling admission with up to 15 years of data (1/94)

> 15,000 detailed (~4 hr) clinical evaluations as home visits across the US

➢About \$1000 per person per year

- Direct computer entry makes data rapidly available to study staff; computer scores and summarizes cognitive tests for clinicians; reduces training time
- Computer-based actuarial decision tree enhances uniformity of diagnostic decisions across clinicians, time, and space
- >No routine informant interviews
- >No routine or special laboratory studies
- >No routine neuroimaging
- ➤No routine case conferences

Decision Rules Guiding the Clinical Diagnosis of Alzheimer's Disease in Two Community-Based Cohort Studies Compared to Standard Practice in a Clinic-Based Cohort Study

- 1. History of cognitive decline by structured interview with participant
- 2. Education (not age) adjusted cutoff scores on 11 cognitive tests
- 3. Neuropsychologist rates impairment on five cognitive domains (orientation, attention, memory, language, visuospatial ability)
- 4. Clinician assigns diagnoses of dementia and its principal causes (e.g., AD, stroke, dementia due to stroke, PD)
- 5. MCI refers to persons with cognitive impairment who are not demented

Bennett DA, et al. Neuroepidemiology 2006;27:169-76.

Memory complaints are related to Alzheimer disease pathology in older persons

> How often do you have trouble remembering things, with responses ranging from 5 = very often to 1 = never;
> How is your memory compared to 10 years ago, with responses ranging from 5 = much worse to 1 = much better.

Model term*	Estimated effect of AD pathology	SE	p Value
Model A: AD pathology	0.88	0.28	0.002
Model B: Adjustment for depressive symptoms	0.87	0.28	0.003
Model C: Adjustment for chronic health problems	0.83	0.29	0.006

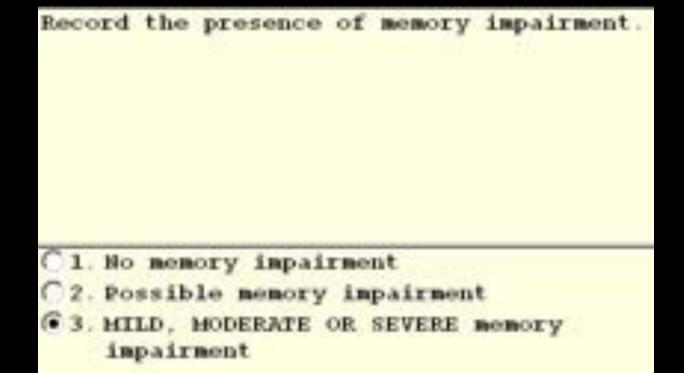
Barnes LL, et al. Neurology. 2006;67:1581-5.

Cognitive test	Cognitive domain	Maximum score	<8	8-11	12 - 16	>16
MMSE 1-10	Orientation	10	<7	<8	<8	<9
Digits Backward	Attention	12	<3	<4	<5	<5
Symbol Digit	Attention	110	<8	<16	<21	<25
Logical Memory IIa	Memory	25	<3	<5	<5	<9
Word List Recall	Memory	10	<3	<5	<5	<5
Word List Recognition	Memory	10	<8	<9	<9	<9
Boston Naming	Language	15	<9	<10	<11	<13
Category Fluency	Language	NA	<9	<10	<10	<12
Complex Ideas	Languago	8	<7	<7	<7	<7
Line Orientation	Visuospatial	15	<3	<5	<7	<8
Progressive Matrices	Visuospatial	9	<5	< 6	<7	<8

Bennett DA, et al. *Neurology.* 2000;59:198-205.

NEUROLOGISTS IMPRESSION OF CLINICAL EVALUATION DATA

[EXAMINER: REVIEW CLINICAL EVALUATION SUMMARY DATA PRIOR TO SEEING SUBJECT.]


Record whether subject asserts that (s)he has experienced loss of memory or other cognitive function(s).

1. Yes

02. No

Record number of [POSSIBLE, MILD, MODERATE or SEVERE] impaired cognitive domains.

C1.	NO impaired or possible impaired	C4.	TWO impaired domains
e la chi	domains	C 5.	THREE impaired domains
C 2.	ONE or more possible impaired domains		
	with NO impaired domains	07.	FIVE impaired domains
63.	ONE impaired domain		

[EXAMINER: RENDER YOUR OPINION REGARDING COGNITIVE DECLINE AFTER REVIEWING THE CLINICAL EVALUATION SUMMARY DATA AND SPEAKING WITH SUBJECT]

Based on review of all available data and your interaction with the subject, in your opinion, has (s)he experienced a meaningful decline in cognitive function relative to a previous level of performance?

1. Yes
2. Possible
3. No

```
For Dementia: the algorithmic diagnosis is Possible
   Do you agree with it?
   • 1. Yes
   C 2. No
For Alzheimer's disease: the algorithmic diagnosis is Possible
Do you agree with it?
1. Yes
2. No
```

SUMMARY OF ALL ALGORITHMIC DIAGNOSES FOR: 72659872 Eval. Date: 12/18/2006

100	Disease	Algorithmic Dx	Doc Agreed	? Doc's Dx
1	Dementia	Possible	Yes	Possible
2	Alzheimers Disease	Possible	Yes	Possible
3	Parkinsonism	Not Present	Yes	Not Present
4	Parkinson's Disease	Not Present	Yes	Not Present
5	Stroke	Not Present	Yes	Not Present
6	CI due to Stroke	Not Present	Yes	Not Present
7	Depression	Possible	Yes	Possible
C	og. Impairment: One;	Hen. Impairment:	Definite; P	cpnt. evaluated: Yes

<<<< Hit ENTER to go to comment screen >>>>

SUMMARY OF ALL ALGORITHMIC	DIAGNOSES FOR: 0	00000136 Eval.	Date: 10/4/2007
Disease	Algorithmic Dx	Doc Agreed?	Doc's Dx
1. Dementia	Possible	Yes	Possible
2. Alzheimers Disease	Possible	Yes	Possible
3. Parkinsonism	Not Present	Yes	Not Present
4. Parkinson's Disease	Not Present	Yes	Not Present
5. Stroke	Not Present	Yes	Not Present
6. CI due to Stroke	Not Present	Yes	Not Present
7. Depression	Not Present	Yes	Not Present
Cog. Impairment: Three	Mem. Impairment:	Definite; Po	cpnt. evaluated: Yes

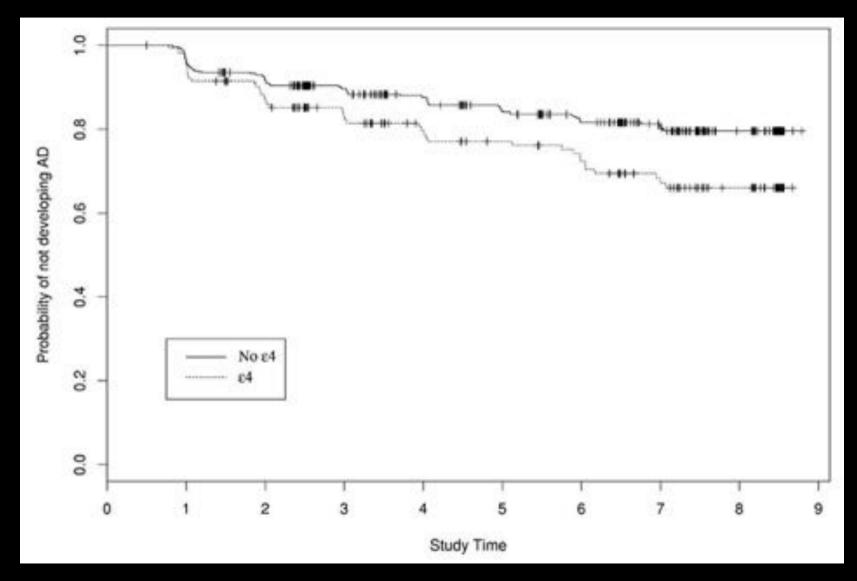
<<<< Hit ENTER to go to comment screen >>>>

osis is Possible		
OX] AND SPECIFY WHY	YOUR DIAGNOSIS	THE NEUROPSYCHOLOGISTS IS DIFFERENT.
1		
	FOr DEMENT	IA:
The Algorith	mic Diagnos	is is: Possible
-		
PLEASE speci	fy why your	diagnosis is differe
C DIAGNOSES FOR:	22865387 Eva	1. Date: 12/18/2006
Algorithmic Dx	Doc Agree	d? Doc's Dx
Possible	No	Probable
Possible	Ho	Probable
	Possible	
	Possible Possible	
No		
	ED AND YOUR DIAGNOS: OX] AND SPECIFY WHY or your own diagnos The Algorith Docto PLEASE speci C DIAGNOSES FOR: Algorithmic Dx Possible	ED AND YOUR DIAGNOSIS DIFFERS FROM OX] AND SPECIFY WHY YOUR DIAGNOSIS or your own diagnosis. For DEMENT The Algorithmic Diagnos Doctor's Diagnos PLEASE specify why your C DIAGNOSES FOR: 22865387 Eva Algorithmic Dx Doc Agree No

7. Depression Not Present Yes

Cog. Impairment: Two; Hem. Impairment: Definite; Pcpnt. evaluated: Yes

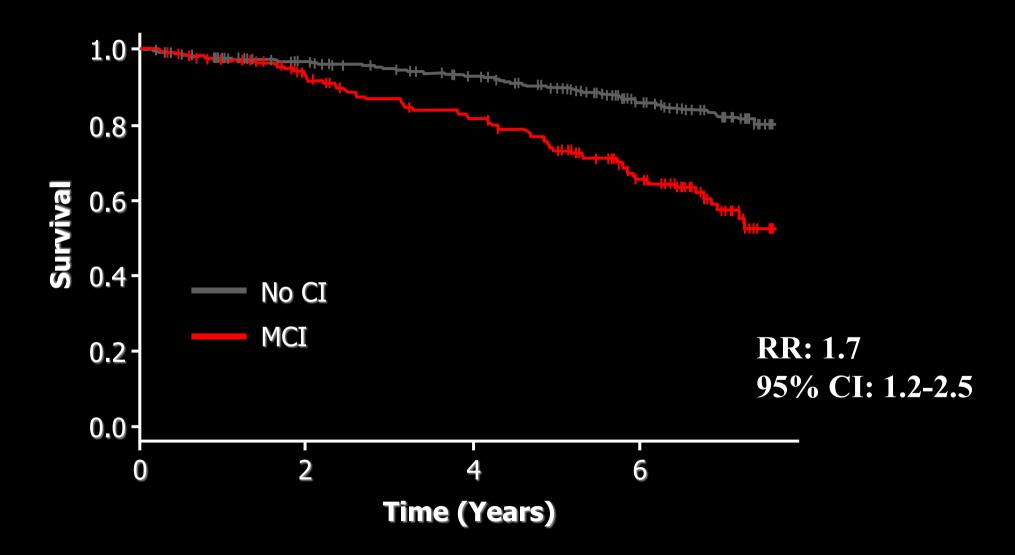
Not Present

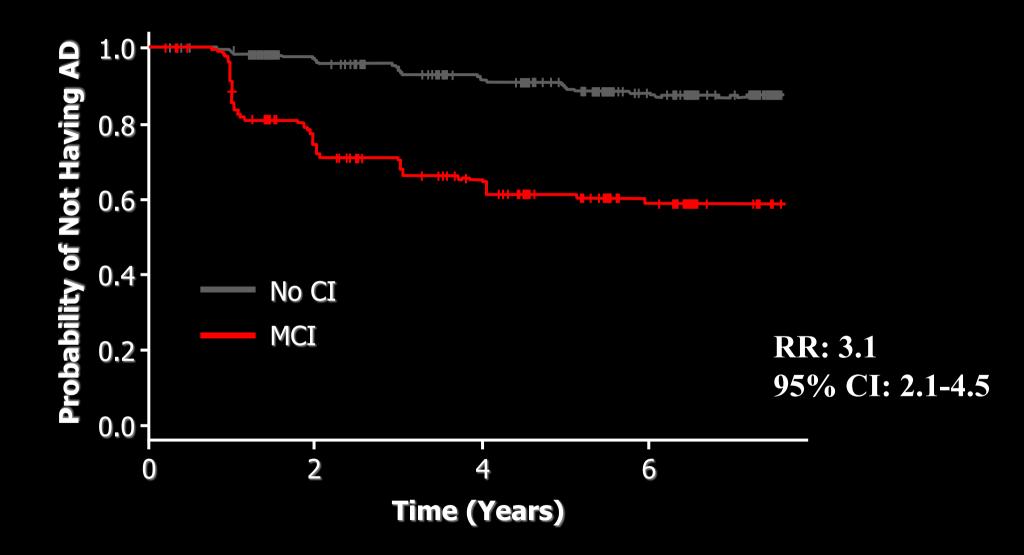

<<<< Hit ENTER to go to comment screen >>>>

Decision Rules Guiding the Clinical Diagnosis of Alzheimer's Disease in Two Community-Based Cohort Studies Compared to Standard Practice in a Clinic-Based Cohort Study

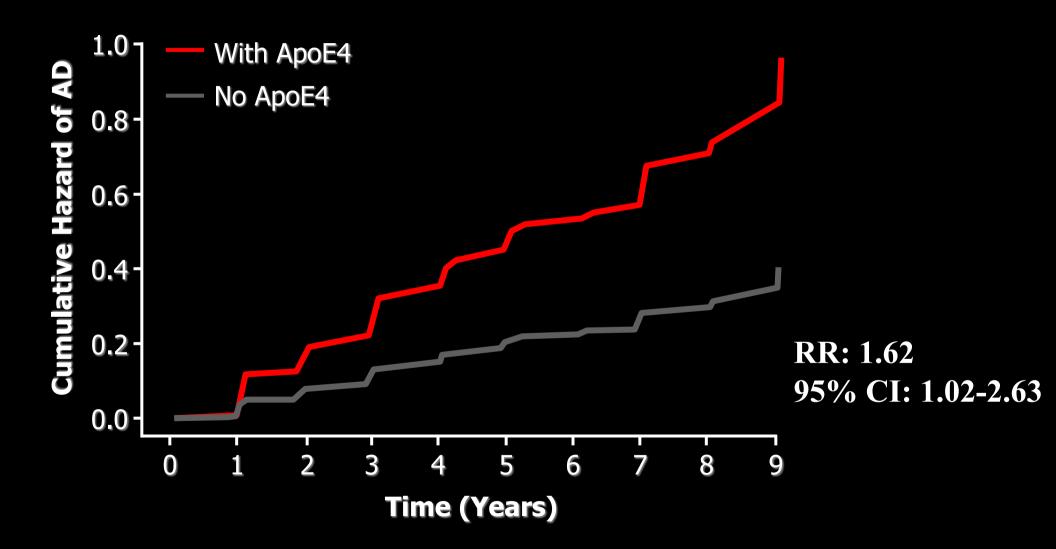
	RADC	ROS/MAP			
Ν	306	141			
CERAD	.94	.92			
NIA-Reagan	.94	.91			

Bennett DA, et al. Neuroepidemiology 2006;27:169-76.

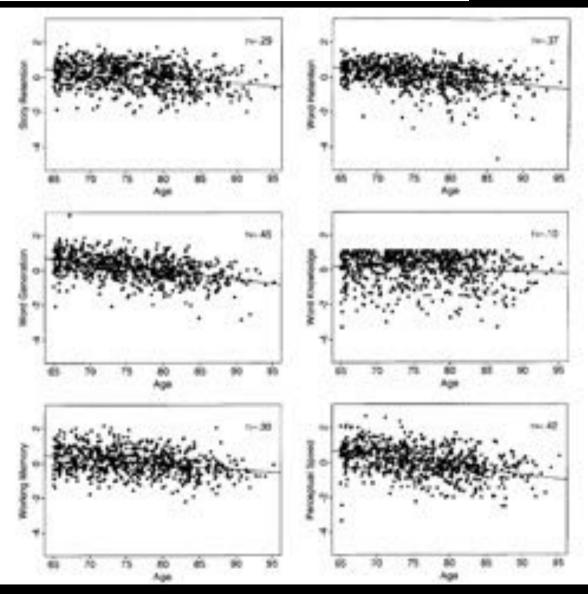

The Apolipoprotein E ϵ 4 Allele and Decline in Different Cognitive Systems During a 6-Year Period

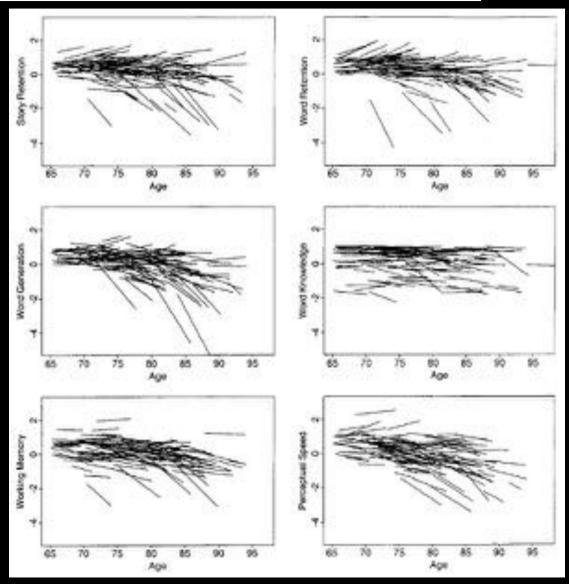

Wilson RS, et al. Arch Neurol 2002;59:1154-1160.

Test	Mild cognitive impairment	No cognitive impairment
Logical Memory In	9.6 (3.7)	12.8 (3.6)
Logical Memory IIa	7.2 (3.4)	11.3 (3.9)
Immediate Story Recall	9.2 (1.7)	10.0 (1.7)
Delayed Story Recall	8.5 (2.2)	9.7(1.7)
Word List Memory	15.4 (4.1)	18.9 (3.6)
Word List Recall	4.1 (2.2)	6.3 (1.7)
Word List Recognition	9.9 (0.7)	9.2 (1.4)
Boston Naming Test	16.9(2.3)	18.5 (1.7)
Verbai Fluency	29.7 (7.8)	36.7 (8.9)
Extended Range Vocabulary	9.7 (3.5)	11.2 (3.2)
Reading Test	12.3 (4.2)	14.0 (4.0)
Digits Forward	7.7 (1.8)	8.4 (2.0)
Digits Backward	5.6 (1.9)	6.6 (2.0)
Digit Ordering	5.9 (2.8)	7.3 (2.6)
Alpha Span	4.4 (1.6)	5.2 (1.7)
Symbol Digit Modalities	34.0 (10.6)	42.1 (10.0)
Number Comparison	22.5 (6.4)	26.4 (7.2)
Line Orientation	8.3 (3.3)	10.6 (2.9)
Progressive Matrices	7.8 (2.8)	11.2 (3.1)

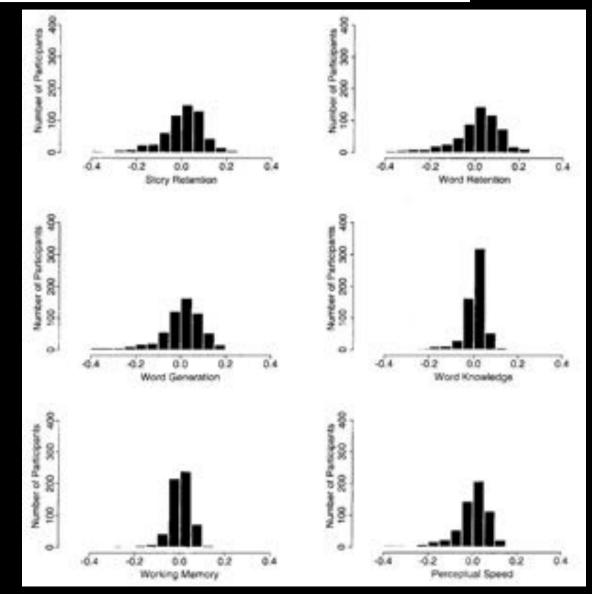

Bennett DA, et al. *Neurology.* 2000;59:198-205.

Bennett DA, et al. Neurology. 2002;59:198-205.

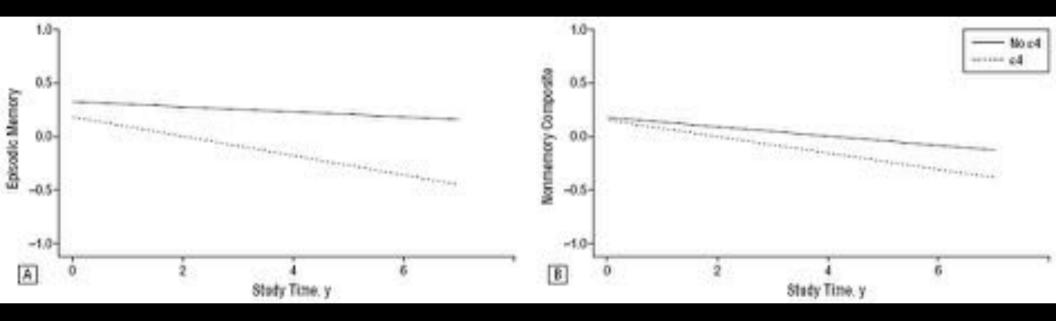

The apolipoprotein E ϵ 4 allele and incident Alzheimer's disease in person's with mild cognitive impairment


Aggarwal NT, et al. Neurocase. 2005;11:3-7.

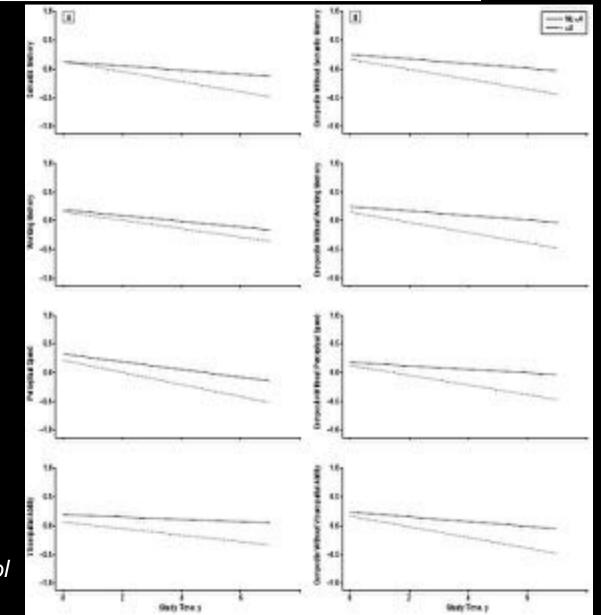
			Hypothesized cognitive domain*		Factor loading ^b				
Test	М	SD	Grouping 1	Grouping 2	1	2	3	4	5
Logical Memory Ia	11.8	3.9	Episodic memory	Story retention	.52	.05	.06	.39	.46
Logical Memory IIa	10.0	4.2	Episodic memory	Story retention	.62	.11	.09	.34	.42
Immediate story recall	9.8	1.7	Episodic memory	Story retention	.11	.14	.11	.07	.87
Delayed story recall	9.4	1.9	Episodic memory	Story retention	.21	.13	.15	.00	.84
Word List Memory	17.7	4.1	Episodic memory	Word retention	.76	.26	.24	.04	.03
Word List Recall	5.6	2.1	Episodic memory	Word retention	.82	.13	.12	.06	.10
Word List Recognition	9.6	1.0	Episodic memory	Word retention	.69	.00	01	- 08	.11
Boston Naming Test	18.1	2.0	Semantic memory	Word generation	.23	38	.10	.47	.09
Verbal Finency	35.0	9.1	Semantic memory	Word generation	.45	.41	.27	.09	.11
Extended Range Vocabulary Test	10.9	3.3	Semantic memory	Word knowledge	.04	.13	.24	.82	.07
Reading test	13.6	4.1	Semantic memory	Word knowledge	.00	.09	.26	.81	.04
Digit Span Forward	8.2	1.9	Working memory	Working memory	.02	.05	.78	18	10
Digit Span Backward	6.3	2.0	Working memory	Working memory	.06	.11	.75	.19	.12
Digit ordering	7.7	1.7	Working memory	Working memory	15	.41	.50	15	10
Alpha span	5.0	1.7	Working memory	Working memory	.27	23	.70	.13	.04
Symbol Digit Modalities Test	39.5	10.8	Perceptual speed	Perceptual speed	.25	.79	.19	01	.12
Number Comparison	25.2	7.1	Perceptual speed	Perceptual speed	.07	.77	.13	.00	10
Judgment of Line Orientation	9.9	3.2	Visuospatial ability	Visuospatial ability	09	.48	.03	.30	.08
Standard Progressive Matrices	10.3	3.4	Visuospatial ability	Visuospatial ability	.22	.62	.13	31	.03


Wilson RS, et al. *Psych & Aging* 2002;17:179-193.

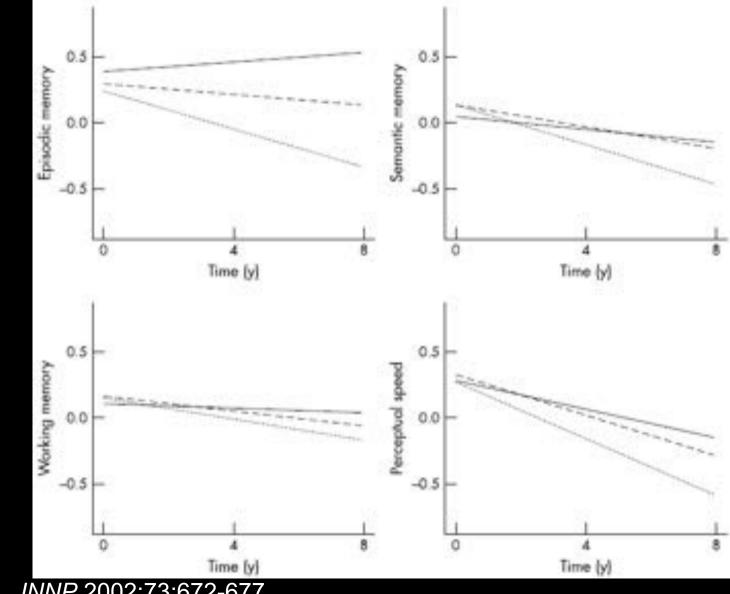
Wilson RS, et al. *Psych & Aging* 2002;17:179-193.



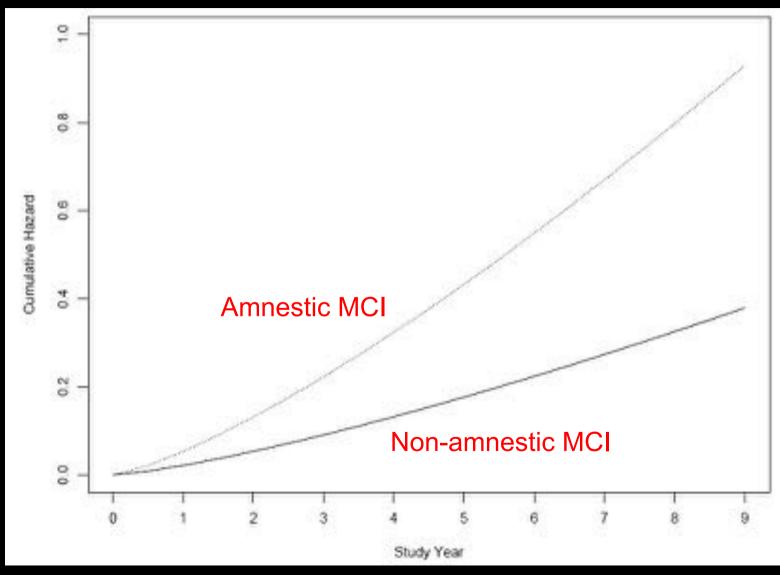
Wilson RS, et al. *Psych & Aging* 2002;17:179-193.


Wilson RS, et al. Psych & Aging 2002;17:179-193.

The Apolipoprotein E ϵ 4 Allele and Decline in Different Cognitive Systems During a 6-Year Period


Wilson RS, et al. *Arch Neurol* 2002;59:1154-1160.

The Apolipoprotein E ϵ 4 Allele and Decline in Different Cognitive Systems During a 6-Year Period


Wilson RS, et al. *Arch Neurol* 2002;59:1154-1160.

The apolipoprotein E e2 allele and decline in episodic memory

Wilson RS, et al. *JNNP* 2002;73:672-677.

Mild cognitive impairment in different functional domains and incident Alzheimer's disease

Aggarwal NT, et al. JNNP 2005;76;1479-1484.

Assessment of Cognitive Decline in Old Age with Brief Tests Amenable to Telephone Administration

Test	No dementia (mean ± SD)	Dementia (mean ± SD		othesized nitive dom	ain	
Immediate story	9.7±1.8	7.1±2.5	epis	odic mem	ory	
Delayed story	9.3 ± 2.0	5.3 ± 3.3	epis	odic memo	ory	
Animal fluency	17.4 ± 5.2	10.9 ± 4.0	sem	antic mem	ory	
Fruit/veg. fluency	17.4 ± 4.9	11.0 ± 4.7	sem	antic mem	ory	
Digits Forward	8.3 ± 2.0	6.7 ± 2.2	worl	king memo	bry.	
Digits Backward	6.3 ± 2.0	4.4 ± 1.9	wor	working memory		
Digit Ordering	7.0 ± 2.6	4.4 ± 3.1	wor	king memo	ory	
	Model term	1	d.f.	Mean square	F value	p value
	Group		1,82	0.13	0.09	0.761
	Test occasio	on	2, 164	0.08	0.69	0.496
	Group × te	est occasion	2, 164	0.03	0.24	0.774

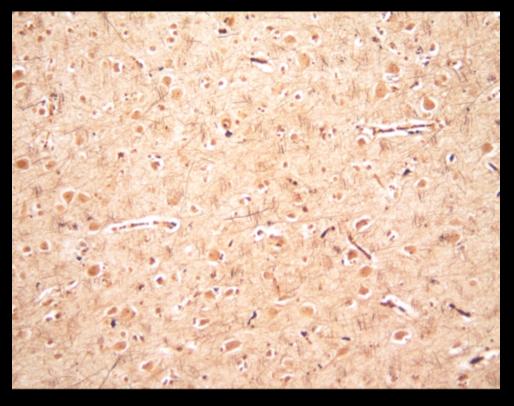
Wilson RS, et al. *Neuroepi* 2005;25:19-25.

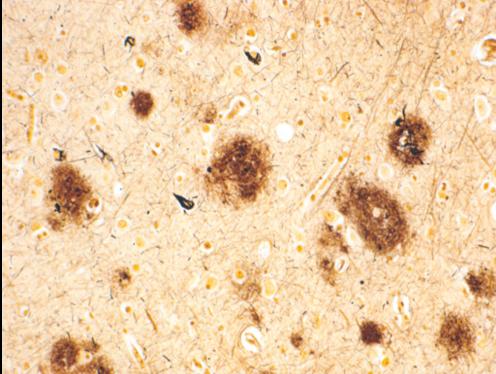
Assessment of Cognitive Decline in Old Age with Brief Tests Amenable to Telephone Administration

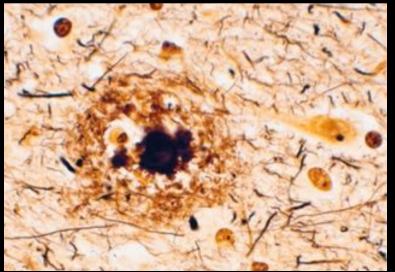
Outcome measure	Model term	Estimate	SE	p value
Episodic memory	time	-0.073	0.011	< 0.001
58	APOE 24	-0.063	0.061	0.303
	APOE $\varepsilon 4 \times time$	-0.078	0.018	< 0.001
Semantic memory	time	-0.069	0.007	< 0.001
	APOE e4	-0.073	0.063	0.243
	APOE $\varepsilon 4 \times time$	-0.026	0.011	0.019
Working memory	time	-0.018	0.005	<0.001
	APOE 84	-0.028	0.052	0.597
	APOE $\epsilon 4 \times time$	-0.021	0.008	0.008
Global cognition	time	-0.044	0.006	< 0.001
	APOE 84	-0.051	0.041	0.212
	APOE e4 x time	-0.036	0.009	< 0.001

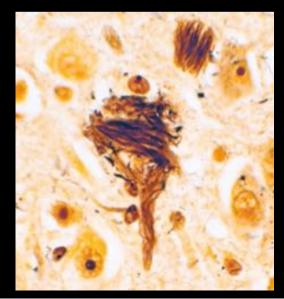
Data from mixed models adjusted for age, sex and education. SE = Standard error.

Wilson RS, et al. *Neuroepi* 2005;25:19-25.


I specialize in theoretical math. My appointment is 50% research, 50% teaching and 25% administration.


Objectives:


Review clinical data collection elements
 Cognitive function tests
 Clinical diagnoses

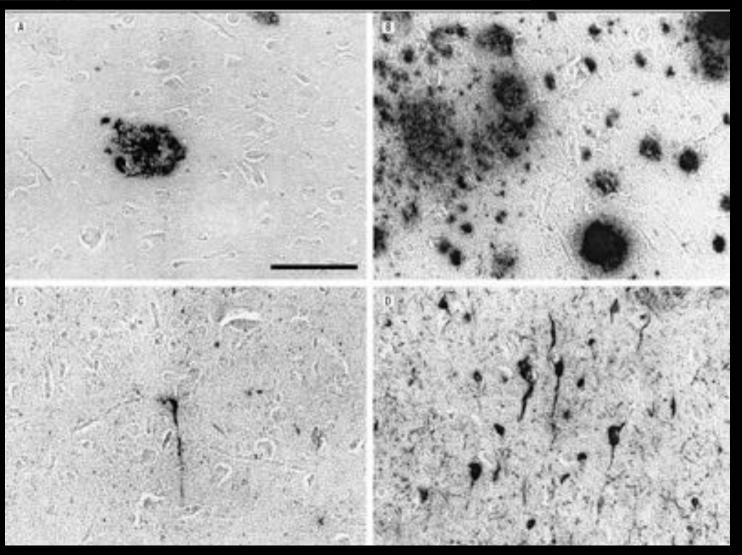

Review post-mortem data collection elements

- ➢AD pathology
- Cerebrovascular disease
- Lewy body disease

Apolipoprotein E ε4 allele, AD pathology, and the clinical expression of Alzheimer's disease

Table 1 Mean, SD, and range of the raw counts and of the standardized scores for each of the 12 pathologic indices

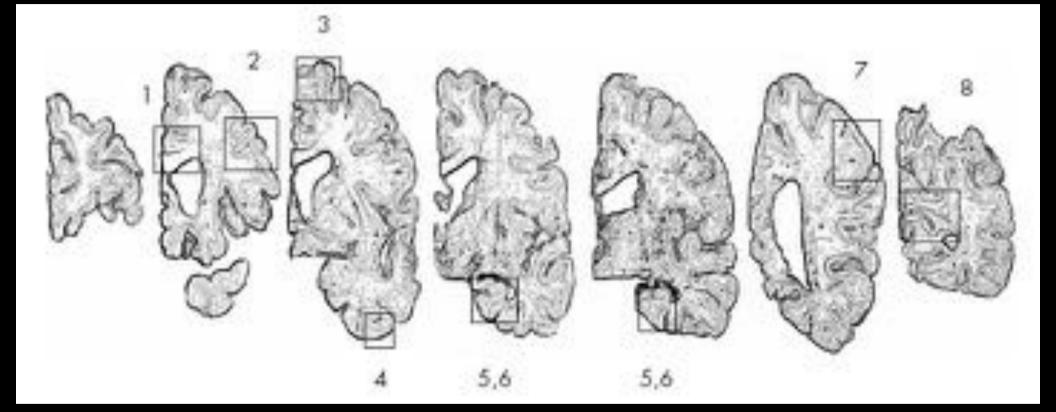
	Raw data			Standardized score		
Variable	Mean	SD	Range	Mean	SD	Range
Frontal neuritic plaques	9.55	11.47	0-81	0,86	1.03	0-7.27
Temporal neuritic plaques	10.03	12,54	0-88	0.82	1.03	0-7.24
Parietal neuritic plaques	9.30	10.25	0-49	0.93	1.03	0-4.91
Entorhinal neuritic plaques	5.78	7.60	0-18	0.78	1.03	0-6.10
Frontal diffuse plaques	23.80	27.30	0-193	0.90	1.03	0-7.29
Temporal diffuse plaques	25.80	25.34	0-134	1.04	1.02	0-5.39
Parietal diffuse plaques	19.05	22.23	0-122	0.88	1.02	0-5.62
Entorhinal diffuse plaques	12.03	11.13	0-43	1.09	1.01	0-3.91
Frontal neurofibrillary tangles	1.94	4.57	0-28	0.44	1.04	0-6.38
Temporal neurofibrillary tangles	5.93	9.48	0-43	0.65	1.03	0-4.67
Pariotal neurofibrillary tangles	2.47	5,22	0-34	0.49	1.04	0-6.78
Entorhinal neurofibrillary tangles	16.67	15.47	0-74	1.09	1.01	0-4.84


Bennett DA, et al. Neurology 2003;60:246-253

Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions

Characteristics	NCI	MCI	Dementia	Total
Demographic				
n	60	37	83	180
Men, %	50.0	40.5	44.6	45.6
Mean age at death, y (SD)	81.8 (6.6)	85.0 (5.6)	87.2 (6.2)	84.9 (6.6)
Mean education, y (SD)	18.7 (3.4)	18.5 (4.1)	17.4 (3.2)	18.1 (3.5)
Mean MMSE (SD)	28.2 (1.4)	26.8 (2.1)	16.8 (7.8)	22.6 (7.7)
Global cognitive score (SD)	0.08 (0.42)	-0.52(0.41)	-1.79(0.97)	-0.91 (1.11)
Interval, mo (SD)	5.9 (3.5)	7.2 (3.7)	6.7 (3.6)	6.5 (3.6)
Pathologic				
AD pathology measure (SD)	0.45 (0.40)	0.67 (0.54)	1.15(0.72)	0.82 (0.67)
Neuritic plaques (SD)	0.44 (0.57)	0.59 (0.60)	1.28 (0.99)	0.86 (0.88)
Diffuse plaques (SD)	0.64 (0.69)	0.91 (0.74)	1.24 (0.90)	0.97 (0.85)
Neurofibrillary tangles (SD)	0.26 (0.27)	0.50 (0.58)	0.94 (0.99)	0.62(0.80)
Macroscopic infarctions, %	22.0	32.4	45.8	35.2
Lewy body disease, %	11.7	8.1	21.7	15.6

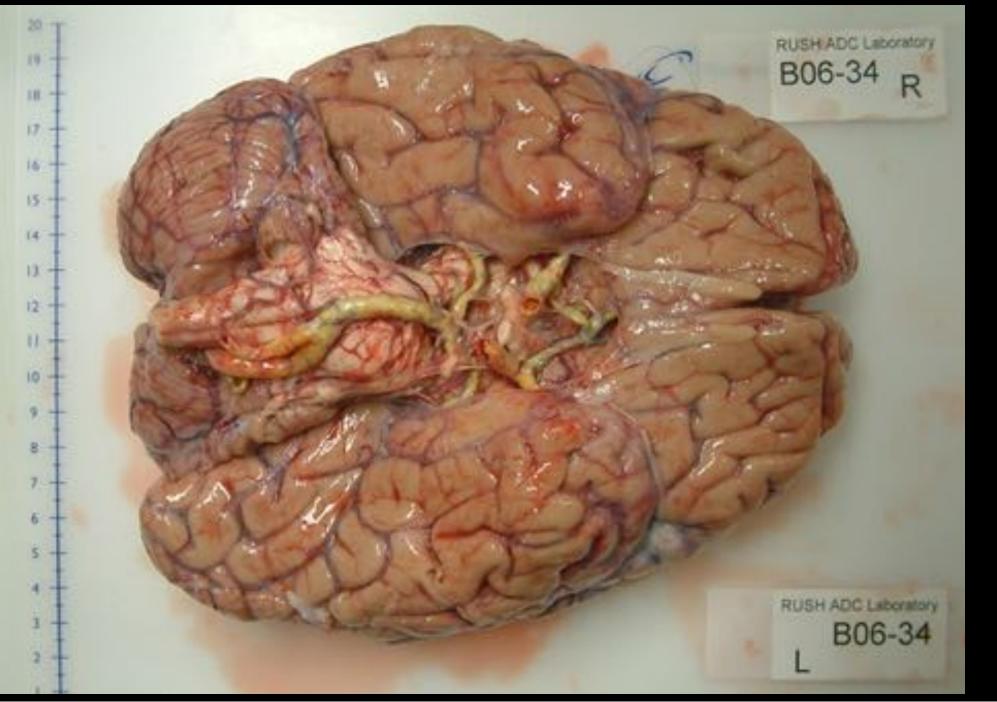
Bennett DA, et al. Neurology 2005;64:834-842.


Neurofibrillary Tangles Mediate the Association of Amyloid Load With Clinical Alzheimer Disease and Level of Cognitive Function

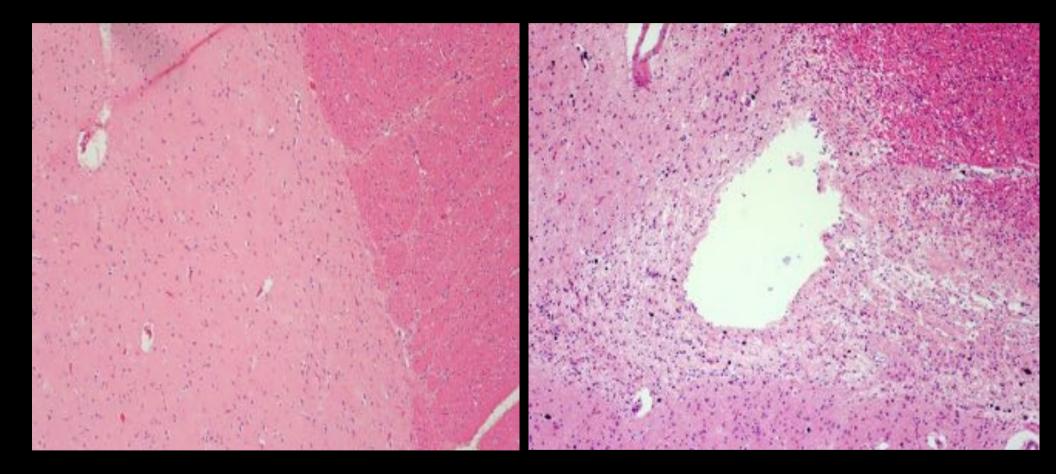
Bennett DA, et al. Arch Neurol 61:378-384

The relationship between cerebral Alzheimer's disease pathology and odour identification in old age

- (1) anterior cingulate cortex (Brodmann area (BA) 24)
- (2) dorsal lateral prefrontal cortex (BA 46/9)
- (3) superior frontal cortex (BA 6/8)
- (4) inferior temporal cortex (BA 20)


Wilson RS, et al. JNNP 2007;78:30-35.

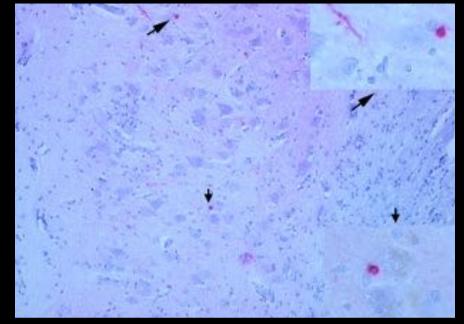
- (5) hippocampus (CA1/subiculum)
- (6) entorhinal cortex proper (BA 28)
- (7) angular/supramarginal gyrus (BA 39/40)
- (8) primary visual cortex (BA 17)

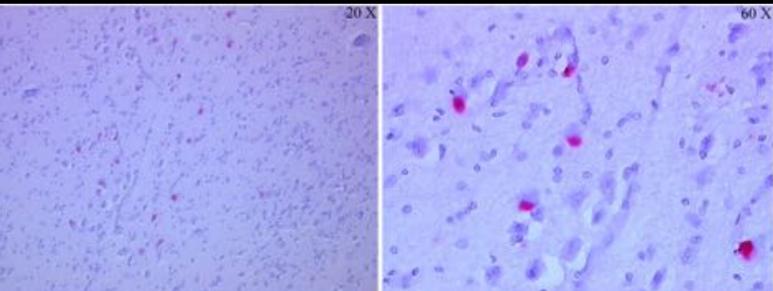

Neurofibrillary Tangles Mediate the Association of Amyloid Load With Clinical Alzheimer Disease and Level of Cognitive Function

Characteristic	No Dementia (n = 53)	Alzheimer Disease (n = 44)	Total (N = 97)
Male, No. (%)	24 (45.3)	17 (38.6)	41 (42.3)
Age at death, y	82.4 ± 6.5	88.1 ± 5.3	85.0 ± 6.6
Education, y	18.7 ± 3.3	17.3 ± 3.0	18.1 ± 3.2
MMSE score	27.66 ± 1.89	16.07 ± 7.38	22.4 ± 7.75
Global cognition	-0.07 ± 0.53	-1.82 ± 0.83	-0.87 ± 1.11
Median interval, mo	8.0	8.6	8.2
Amyloid load, %	1.83 ± 1.84	3.81 ± 2.47	2.73 ± 2.35
Tangles/mm ²	3.51 ± 3.64	14.22 ± 12.38	8.37 ± 10.23

Bennett DA, et al. Arch Neurol 61:378-384

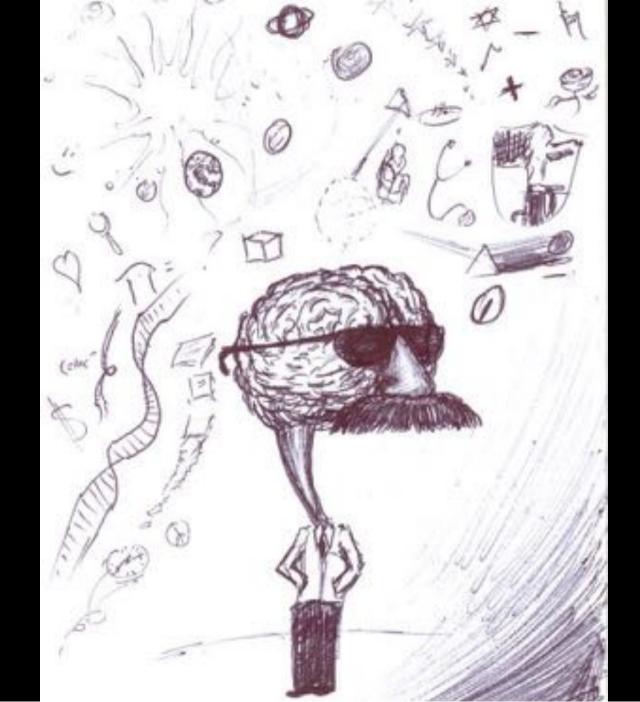
Cerebral Infarctions and the Relationship of Depression Symptoms to Level of Cognitive Functioning in Older Persons


Global AD pathology measure	0.55 (0.48)	1.15 (0.77)	0.82 (0.69)
Number of infarctions, %			
1	13 (15.1)	13 (19.4)	26 (17.0)
>1	10 (11.6)	19 (28.4)	29 (19.0)
Volume of infarction, %			
1st quartile	7 (8.1)	5 (7.5)	12 (7.8)
2nd quartile	5 (5.8)	10 (14.9)	15 (9.8)
3rd quartile	5 (5.8)	8 (11.9)	13 (8.5)
4th quartile	6 (7.0)	9 (13.4)	15 (9.8)
Location of infarction, %			
Cortical	7 (8.1)	10 (14.9)	17 (11.1)
Subcortical	19 (22.1)	28 (41.8)	47 (30.7)
Frontal	5 (5.8)	6 (9.0)	11 (7.2)
Non-frontal	18 (20.9)	26 (38.8)	44 (28.8)
Left	12 (14.0)	18 (26.9)	30 (19.6)
Right	16 (18.6)	21 (31.3)	37 (24.2)


Bennett DA, et al. Am J Geri Psych 2004;12:211-219.

Alpha-Synuclein in substantia nigra

Alpha-Synuclein in hippocampus



Alpha-Synuclein in neocortex

Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions

Characteristics	NCI	NCI MCI	
Lewy body disease			
Nigra predominant	5 (8.3)	2(5.4)	1(1.2)
Limbic type	2(3.3)	0	3 (3.6)
Neocortical type	0	1(2.7)	14 (16.9)

Bennett DA, et al. Neurology 2005;64:834-842.

