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What is Probability?

Consider the following statements. . .

1 The probability of a coin toss landing heads is 1/2. John Kerrich
flipped a coin 10,000 times while a POW in WWII. He obtained 5,067
heads.

2 The probability that the Republicans will control the House of
Representatives after the 2010 Congressional elections is 0.735.
Intrade odds, 26 Aug 2010, 10:50am

3 The probability that James Madison wrote the disputed Federalist
papers is > 0.999. Mosteller and Wallace (1964).

4 The probability that God exists is 0.67. Stephen D. Unwin, The
Probability of God: A Simple Calculation that Proves the Ultimate
Truth.
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What is probability?
Technical definition

Definition: Probability

Probability is a set function P(·) defined on subsets of a space Ω that
satisfies the following properties:

1 P(Ω) = 1

2 For a subset A ⊂ Ω, P(A) ≥ 0

3 If A1,A2, . . . are disjoint subsets of Ω then

P(A1 ∪ A2 ∪ · · · ) = P(A1) + P(A2) + · · ·
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What should we use probability for?
Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the
question is “What should we use probability for?”

A frequentist statistician1. . .

I will use probability only to model uncertainty in the outcomes of
repeatable experiments (e.g., like the toss of a coin).

I believes probability is an objective property—the long-run relative
frequency (hence the name “frequentist”)—of some process that
generates data.

A Bayesian statistician2. . .

I will use probability to model uncertainty from any source (e.g., that a
coin toss lands heads or that Madison wrote the disputed Federalist
papers.)

1Obviously, this is just a caricature.
2And so is this.
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Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings
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Bayesian vs. Frequentist inference in practice
An example using amazon.com seller ratings

You want to buy a used book on amazon.com

Your book is being sold by two “marketplace” sellers for the same
price and in the same condition.

Marketplace sellers

Name Positive Reviews Total Reviews Percent Positive

BigNBooks 29 30 96.7%
LittleNBooks 5 5 100%

Which book seller should you choose?

I LittleNBooks has a higher rating, but. . .
I LittleNBooks only has five ratings.
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Bayesian vs. Frequentist inference in practice
A mathematical model for bookseller ratings

Reviewers’ ratings = repeatable event

I Frequentists ♥ probability.
I Bayesians ♥ probability.

A simple model posits that there exists some true probability of a
positive review for BigNBooks (θB) and LittleNBooks (θL).

I Y
(B)
i =

{
1 if review positive
0 if review negative

I P(Y
(B)
i = 1|θB) = θB

I Y
(L)
i =

{
1 if review positive
0 if review negative

I P(Y
(L)
i = 1|θL) = θL
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Bayesian vs. Frequentist inference in practice
The likelihood

Assume Y
(B)
1 , . . . ,Y

(B)
30 = Y(B) and Y

(L)
1 , . . . ,Y

(L)
5 = Y(L)

independent, then

P(Y
(B)
1 = 1, . . . ,Y

(B)
29 = 1,Y

(B)
30 = 0|θB) = P(Y(B)|θB)

= θ29
B (1− θB)

P(Y
(L)
1 = 1, . . . ,Y

(L)
5 = 1|θL) = P(Y(L)|θL)

= θ5
L
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Bayesian vs. Frequentist inference in practice
Frequentist inference

θB and θL are fixed, unknown constants → probability

MLE: θ̂ = # postive reviews
total # reviews

Confidence Interval: θ̂ ± zα/2

√
θ̂(1−θ̂)

n

Frequentist inference

Seller MLE 95% Conf. Interval

BigNBooks 0.967 (0.90, 1.03)
LittleNBooks 1.000 (1.00, 1.00)
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Bayesian vs. Frequentist inference in practice
Bayesian inference

θB and θL are fixed, unknown
constants.

A Bayesian uses probability to
represent uncertainty about θB
and θL.

A Bayesian must choose prior
distributions (often shortened to
“priors”) for θB and θL

For this problem
p(θB) = p(θL) = Unif(0, 1).
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Bayesian vs. Frequentist inference in practice
The posterior distribution

Consider θB (things are similar for θL)

p(θB) represents our uncertainty about θB before observing the data.
The Bayesian wants

p(θB |Y(B))

the posterior distribution.

The posterior distribution represents our uncertainty about θB after
observing the data.
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Bayesian vs. Frequentist inference in practice
Bayes Theorem

p(θ)
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Bayesian vs. Frequentist inference in practice
Posterior distributions for θB and θL

Posterior distributions

Seller Prior Likelihood Posterior

BigNBooks

Unif(0, 1) θ29
B (1− θL)1 Beta(29 + 1, 1 + 1)

LittleNBooks Unif(0, 1) θ5
L(1− θL)0 Beta(5 + 1, 0 + 1)
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Bayesian vs. Frequentist inference in practice
Comparing the estimates
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Outline

1 Bayesian Inference

2 Item Response Theory

3 Bayesian Item Response Theory

4 Longitudinal Bayesian Item Response Theory
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Thinking about tests

Test takers

I Test takers have different levels of ability.

Test items

I Some test items are more difficult than others.
I Some test items are better (more “discriminating”) than others.
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A mathematical model for tests
Defining Greek symbols

Consider a test with p items (j = 1, . . . , p).

Let δj be the difficulty of item j .

Let αj be the discrimination of item j .

Let

Yj =

{
1 if an individual endorses j-th item
0 otherwise

Let θ be the ability of an individual test taker.
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A mathematical model for tests
The probability of success on jth item

P(Yj = 1|θ) =
1

1 + e−αj (θ−δj )

P(Yj = 0|θ) = 1− 1

1 + e−αj (θ−δj )
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Visualizing the model
An item with “average” difficulty δj = 0.0 (αj = 1.5)
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Visualizing the model
An item with above-average difficulty δj = 1.5 (αj = 1.5)
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Visualizing the model
An item with below average discrimination αj = 0.25 (δj = 0.0)
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Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)

θ

P
(Y

=
1|

θ)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

1 + e−α(θ−δ)

S. McKay Curtis (UW Dept. of Stat.) Bayesian IRT for the Masses August 30, 2010 30 / 47



Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)
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Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)

θ

P
(Y

=
1|

θ)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

1 + e−α(θ−δ)

θ = 1

S. McKay Curtis (UW Dept. of Stat.) Bayesian IRT for the Masses August 30, 2010 30 / 47



Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)
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Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)
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Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)

θ

P
(Y

=
1|

θ)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

1 + e−α(θ−δ)

θ = −1

S. McKay Curtis (UW Dept. of Stat.) Bayesian IRT for the Masses August 30, 2010 30 / 47



Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)
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Visualizing the model
An item with above average discrimination αj = 8.0 (δj = 0.0)
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Information
A benefit of using an IRT model

Loosely: Information is measure of how precisely we can estimate
some quantity of interest (like θ).

Precisely: If θ̂ is the MLE of θ, then

I (θ) = 1/Vθ(θ̂)

where Vθ(θ̂) is the (asymptotic) variance of the MLE θ̂.
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Information
Test information

Information for a test of p items:

I (θ) =

p∑
j=1

Ij(θ)
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IRT for a sample of n individuals
The likelihood

For the i th individual, we have

I θi , i = 1, . . . , n
I (Yi1, . . . ,Yip) = Yi

I

P(Yi |θi ) = P(Yi1 = yi1, . . . ,Yip = yip|θi )
= P(Yi1 = yi1|θi )× · · · × P(Yi1 = yip|θi )

For a sample of n individuals, we have

I Y1, . . . ,Yn

I

P(Y1, . . . ,Yn|θ1, . . . , θn) = P(Y1|θ1)× · · · × P(Yn|θn)

I Called the “likelihood.”
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IRT for a sample of n individuals
Estimating model parameters

Our model has many parameters: (θ1, . . . , θn) = θ, (α1, . . . , αp) = α,
and (δ1, . . . , δp) = δ.

Likelihood-based estimates: Joint maximum likelihood, marginal
maximum likelihood.

Nonlikelihood-based estimates: Weighted least squares (e.g., in
Mplus).
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IRT Assumptions

Unidimensionality.

I Example violation: Math word problems

Local independence.

I Example violation: Testlets

More sophisticated models are often needed to correct for violations
of these assumptions.
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Outline

1 Bayesian Inference

2 Item Response Theory

3 Bayesian Item Response Theory

4 Longitudinal Bayesian Item Response Theory
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Bayesian inference
Recap

For Bayesian
inference, we need

1 Likelihood
2 Priors for all

unknown
parameters

p(θ)

P(Y|θ)

Bayes
Theorem

p(θ|Y)
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Priors for IRT parameters

θi ∼ N(0, 1)

δj ∼ N
(
mδ, s

2
δ

)
αj ∼ N(0,∞)

(
mα, s

2
δ

)
Values of mα, s2

δ , mδ, s2
δ can be chosen reflect prior knowledge of

these items (from other studies?).

OR values of s2
α and s2

δ can be chosen to be large to reflect
“ignorance.”

p(θ,α, δ) = p(θ1) · · · p(θn)p(α1) · · · p(αp)p(δ1) · · · p(δp)
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The posterior distribution

The posterior distribution for IRT parameters

p(θ,α, δ|Y1, . . . ,Yn)

Too complicated (not a simple Beta(κ1, κ2))

Markov chain Monte Carlo (MCMC) to simulate random draws from
the posterior distribution.

BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.

I Open source (free!).
I Can be called from other software (R, SAS, Stata).
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BUGS code for IRT
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Outline

1 Bayesian Inference

2 Item Response Theory

3 Bayesian Item Response Theory

4 Longitudinal Bayesian Item Response Theory
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Longitudinal Bayesian Item Response Theory

Easy to change BUGS code to account for longitudinal data.

For examples, see paper “BUGS Code for Item Reponse Theory.”

Join Paul’s workgroup.
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