Bayesian IRT for the Masses

S. McKay Curtis

University of Washington Department of Statistics

August 30, 2010

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 1 / 47

3

A (10) A (10) A (10)

Acknowledgments

Disclaimers?

- Funded in part by Grant R13AG030995-01A1 from the National Institute on Aging
- The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 3 / 47

◆□→ ◆□→ ◆注→ ◆注→ □注

Outline

- 2 Item Response Theory
- 3 Bayesian Item Response Theory
- 4 Longitudinal Bayesian Item Response Theory

A .

Outline

Bayesian Inference

- 2 Item Response Theory
- 3 Bayesian Item Response Theory
- 4 Longitudinal Bayesian Item Response Theory

A (10) A (10) A (10)

S. McKay Curtis (UW Dept. of Stat.)

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Consider the following statements...

-

3

Consider the following statements...

The probability of a coin toss landing heads is 1/2. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.

Consider the following statements...

- The probability of a coin toss landing heads is 1/2. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.
- The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am

Consider the following statements...

- The probability of a coin toss landing heads is 1/2. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.
- The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am
- The probability that James Madison wrote the disputed <u>Federalist</u> papers is > 0.999. Mosteller and Wallace (1964).

一日、

Consider the following statements...

- The probability of a coin toss landing heads is 1/2. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.
- The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am
- The probability that James Madison wrote the disputed <u>Federalist</u> papers is > 0.999. Mosteller and Wallace (1964).
- The probability that God exists is 0.67. Stephen D. Unwin, <u>The</u> <u>Probability of God: A Simple Calculation that Proves the Ultimate</u> Truth.

3

- 4 週 ト - 4 三 ト - 4 三 ト

S. McKay Curtis (UW Dept. of Stat.)

< 🗇 🕨

S. McKay Curtis (UW Dept. of Stat.)

S. McKay Curtis (UW Dept. of Stat.)

э.

A 🖓 h

S. McKay Curtis (UW Dept. of Stat.)

S. McKay Curtis (UW Dept. of Stat.)

A 🖓

S. McKay Curtis (UW Dept. of Stat.)

ም.

S. McKay Curtis (UW Dept. of Stat.)

A 🖓

S. McKay Curtis (UW Dept. of Stat.)

< 🗇 🕨 🔸

S. McKay Curtis (UW Dept. of Stat.)

∃ →

< (T) > <

3

Technical definition

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Technical definition

Definition: Probability

Probability is a set function $P(\cdot)$ defined on subsets of a space Ω that satisfies the following properties:

•
$$P(\Omega) = 1$$

2 For a subset
$$A \subset \Omega$$
, $P(A) \ge 0$

③ If A_1, A_2, \ldots are disjoint subsets of Ω then

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

Bayesian statisticians vs. Frequentist statisticians

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

• A frequentist statistician¹...

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

• A frequentist statistician¹...

¹Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

- A frequentist statistician¹...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).

¹Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

- A frequentist statistician¹...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.

¹Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

- A frequentist statistician¹...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.
- A Bayesian statistician²...

¹Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

- A frequentist statistician¹...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.
- A Bayesian statistician²...

²And so is this.

S. McKay Curtis (UW Dept. of Stat.)

¹Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

- A frequentist statistician¹...
 - will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
 - believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.
- A Bayesian statistician²...
 - will use probability to model uncertainty from any source (e.g., that a coin toss lands heads or that Madison wrote the disputed Federalist papers.)

²And so is this.

¹Obviously, this is just a caricature.

An example using amazon.com seller ratings

mazon.com: Used and Ne ×	2							
-) C 🖬 🔂 http://w	ww.amazon.com/gp	/offer-listing/1593858	3698/ref=dp_olp_new?le	e=UTF8&qld=1282972	9248sr=8-28.condition	i=new	📃 🕨 隆	a 🔻 🖸 🕶
is A	Advanced Search	Browse Subjects	New Releases Best	sellers The New	York Times⊕ Bestsellers	Libros En Españo	ol Bargain Books	Textbooks
The Theory and Practice of Item Response Theory (Methodology In The Social Sciences) (Hardcover) by R. J. De Ayala C Batum to product information Always pay through Amazon.com's Shopping Cart or 1-Click. Learn more about Safe Online Shopping and our safe buying guarantee.				Price at a G List Price: \$609 New: fror Used: fror Have one to sell?	Price at a Glance st Price: \$60.00 New: from \$42.00 Used: from \$47.29 a one to sell? Sell yours here			
All New (18 from \$42. how ⊙ New ○ FREE Sup	00) Used (8 fro	m \$47.29) g offers only					Sorted by Price	+ Shipping 💙
ice + Shipping	Condition		Seller Information				Buying Op	otions
42.00 \$3.89 shipping	New		Seller: Spectrum: Seller Rating: ARA In Stock, Ships from <u>International & dome</u> Brand New Book! Or	Dooks 28% positive over VA, United States. Expension estic shipping rates rders ship within 1 Busin	er the past 12 months. (1 edited shipping available <u>return policy</u> . ress Day!	.3,434 total ratings)	Sian in to t ord	d to Cart or urn on 1-Click lering.
48.00 & this item ships for REE with Super Saver hipping. <u>Datails</u> igible for V^{prime} ann more	New		amazon.com. In Stock. Want it del choose One-Day Sh Domestic shipping ra	ivered Monday, August : Npping at checkout. <u>Se</u> ates and <u>return policy</u> .	30? Order it in the next : <u>e details</u> .	14 hours and 36 minute	es, and Sign in to t ord	d to Cart or urn on 1-Click lering.
49.98 \$3.99 shipping	New		Seller: pbshop Seller Rating: *** In Stock, Ships from <u>International 8. dome</u> Brand new book! De (usually 10-14 days	H: 93% positive over United Kingdom. Learn estic shipping rates and livered direct from our I but can be lon » <u>Rea</u>	ar the past 12 months. (1 more about import feas return policy. US warehouse by Expedi d more	.04,442 total ratings) and international shipp ted (4-7 days) or Stan	idard	d to Cart or urn on 1-Click ering.
49.98	New		Seller: pbshopus				AC BO	d to Cart
49.98 tart 🛛 🕫 堤 谢 🛎 👪	New 🔯 🕅 🧐 🍣	emacs@CPC180	Seller: pbshopus	😋 Inbox - Mozila T	Ger slides.pdf	R Graphics: Devi	figures	id to Cart

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 10 / 47

An example using amazon.com seller ratings

• You want to buy a used book on amazon.com

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

Marketplace sellers						
	Name	Positive Reviews	Total Reviews	Percent Positive		
-	BigNBooks	29	30	96.7%		
	LittleNBooks	5	5	100%		

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

Marketplace sellers						
	Name	Positive Reviews	Total Reviews	Percent Positive		
	BigNBooks	29	30	96.7%		
	LittleNBooks	5	5	100%		

• Which book seller should you choose?

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

Marketplace sellers						
	Name	Positive Reviews	Total Reviews	Percent Positive		
	BigNBooks	29	30	96.7%		
	LittleNBooks	5	5	100%		

• Which book seller should you choose?

LittleNBooks has a higher rating, but...
An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

Ma	Marketplace sellers					
	Name	Positive Reviews	Total Reviews	Percent Positive		
-	BigNBooks	29	30	96.7%		
	LittleNBooks	5	5	100%		

- Which book seller should you choose?
 - LittleNBooks has a higher rating, but...
 - LittleNBooks only has five ratings.

A mathematical model for bookseller ratings

• Reviewers' ratings = repeatable event

- Reviewers' ratings = repeatable event
 - ► Frequentists ♡ probability.

A mathematical model for bookseller ratings

• Reviewers' ratings = repeatable event

- ► Frequentists ♡ probability.
- ▶ Bayesians ♡ probability.

- Reviewers' ratings = repeatable event
 - ► Frequentists ♡ probability.
 - ► Bayesians ♡ probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).

- Reviewers' ratings = repeatable event
 - ► Frequentists ♡ probability.
 - ▶ Bayesians ♡ probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).

•
$$Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$$

- Reviewers' ratings = repeatable event
 - ► Frequentists ♡ probability.
 - ▶ Bayesians ♡ probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).

•
$$Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$$

• $P(Y_i^{(B)} = 1 | \theta_B) = \theta_B$

- Reviewers' ratings = repeatable event
 - ► Frequentists ♡ probability.
 - ▶ Bayesians ♡ probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).

$$Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$$

$$P(Y_i^{(B)} = 1 | \theta_B) = \theta_B$$

$$Y_i^{(L)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$$

A mathematical model for bookseller ratings

• Reviewers' ratings = repeatable event

- ► Frequentists ♡ probability.
- ▶ Bayesians ♡ probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_L).

•
$$Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$$

• $P(Y_i^{(B)} = 1 | \theta_B) = \theta_B$
• $Y_i^{(L)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$
• $P(Y_i^{(L)} = 1 | \theta_L) = \theta_L$

Bayesian vs. Frequentist inference in practice The likelihood

• Assume $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = \mathbf{Y}^{(B)}$ and $Y_1^{(L)}, \ldots, Y_5^{(L)} = \mathbf{Y}^{(L)}$ independent, then

イロト 不得 トイヨト イヨト 二日

Bayesian vs. Frequentist inference in practice The likelihood

• Assume $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = \mathbf{Y}^{(B)}$ and $Y_1^{(L)}, \ldots, Y_5^{(L)} = \mathbf{Y}^{(L)}$ independent, then

$$P(Y_1^{(B)} = 1, \dots, Y_{29}^{(B)} = 1, Y_{30}^{(B)} = 0 | \theta_B) = P(\mathbf{Y}^{(B)} | \theta_B)$$
$$= \theta_B^{29} (1 - \theta_B)$$

۲

- 本間 ト イヨ ト イヨ ト 三 ヨ

Bayesian vs. Frequentist inference in practice The likelihood

• Assume $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = \mathbf{Y}^{(B)}$ and $Y_1^{(L)}, \ldots, Y_5^{(L)} = \mathbf{Y}^{(L)}$ independent, then

$$P(Y_1^{(B)} = 1, \dots, Y_{29}^{(B)} = 1, Y_{30}^{(B)} = 0 | \theta_B) = P(\mathbf{Y}^{(B)} | \theta_B)$$
$$= \theta_B^{29} (1 - \theta_B)$$

$$P(Y_1^{(L)} = 1, ..., Y_5^{(L)} = 1 | \theta_L) = P(\mathbf{Y}^{(L)} | \theta_L)$$

= θ_L^5

S. McKay Curtis (UW Dept. of Stat.)

۲

۲

- 本語 ト 本 ヨ ト 一 ヨ

• θ_B and θ_L are fixed, unknown constants \rightarrow probability

A 1

• θ_B and θ_L are fixed, unknown constants $\rightarrow \text{probability}$ • MLE: $\hat{\theta} = \frac{\# \text{ postive reviews}}{\text{total } \# \text{ reviews}}$

- θ_B and θ_L are fixed, unknown constants \rightarrow probability
- MLE: $\hat{\theta} = \frac{\# \text{ postive reviews}}{\text{total } \# \text{ reviews}}$

• Confidence Interval:
$$\hat{ heta} \pm z_{lpha/2} \sqrt{rac{\hat{ heta}(1-\hat{ heta})}{n}}$$

• θ_B and θ_L are fixed, unknown constants \rightarrow probability

• MLE: $\hat{\theta} = \frac{\# \text{ postive reviews}}{\text{total } \# \text{ reviews}}$

• Confidence Interval:
$$\hat{ heta} \pm z_{\alpha/2} \sqrt{rac{\hat{ heta}(1-\hat{ heta})}{n}}$$

Frequentist inference

Seller	MLE	95% Conf. Interval	
BigNBooks	0.967	(0.90, 1.03)	
LittleNBooks	1.000	(1.00, 1.00)	

< 注入 < 注入

• θ_B and θ_L are fixed, unknown constants.

A 🖓

3

- θ_B and θ_L are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .

- θ_B and θ_L are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .
- A Bayesian must choose prior distributions (often shortened to "priors") for θ_B and θ_L

- θ_B and θ_L are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .
- A Bayesian must choose prior distributions (often shortened to "priors") for θ_B and θ_L
- For this problem $p(\theta_B) = p(\theta_L) = \text{Unif}(0, 1).$

- θ_B and θ_L are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .
- A Bayesian must choose prior distributions (often shortened to "priors") for θ_B and θ_L
- For this problem $p(\theta_B) = p(\theta_L) = \text{Unif}(0, 1).$

The posterior distribution

Consider θ_B (things are similar for θ_L)

• $p(\theta_B)$ represents our uncertainty about θ_B before observing the data. The Bayesian wants

$$p(heta_B | \mathbf{Y}^{(B)})$$

the posterior distribution.

The posterior distribution

Consider θ_B (things are similar for θ_L)

• $p(\theta_B)$ represents our uncertainty about θ_B before observing the data. The Bayesian wants

$$p(\theta_B | \mathbf{Y}^{(B)})$$

the posterior distribution.

• The posterior distribution represents our uncertainty about θ_B after observing the data.

3. 3

< 67 ▶

3

∃ → (∃ →

< 4 →

S. McKay Curtis (UW Dept. of Stat.)

3

∃ → (∃ →

< 4 →

S. McKay Curtis (UW Dept. of Stat.)

August 30, 2010 17 / 47

3

∃ → (∃ →

< 4 →

Posterior distributio	ons			
Seller BigNBooks	Prior	Likelihood	Posterior	_

47 ▶

Post	erior distributi	ons			
	Seller BigNBooks	Prior	Likelihood	Posterior	
	DIGINDOOKS	01111 (0,1)			

Posterior distributions					
	Seller	Prior	Likelihood	Posterior	
	BigNBooks	Unif(0,1)	$ heta_B^{29}(1- heta_L)^1$		

47 ▶

Posterior distributions						
	Seller	Prior	Likelihood	Posterior		
	BigNBooks	Unif(0,1)	$ heta_B^{29}(1- heta_L)^1$	Beta(29+1,1+1)		

Posterior distributions Seller Prior Likelih

 $\begin{array}{c|c} {\sf Seller} & {\sf Prior} & {\sf Likelihood} & {\sf Posterior} \\ \hline {\sf BigNBooks} & {\sf Unif}(0,1) & \theta_B^{29}(1-\theta_L)^1 & {\sf Beta}(29+1,1+1) \\ {\sf LittleNBooks} & \\ \end{array}$

Posterior distributions for θ_B and θ_L

Posterior distributions

Seller	Prior	Likelihood	Posterior
BigNBooks	Unif(0, 1)	$ heta_B^{29}(1- heta_L)^1$	${\sf Beta}(29+1,1+1)$
LittleNBooks	Unif(0,1)		

-

A 🖓

Posterior distributions

Seller	Prior	Likelihood	Posterior
BigNBooks	Unif(0, 1)	$ heta_B^{29}(1- heta_L)^1$	Beta(29+1,1+1)
LittleNBooks	Unif(0,1)	$ heta_L^5 (1- heta_L)^0$	

47 ▶

Posterior distributions for θ_B and θ_L

Posterior distributions

Seller	Prior	Likelihood	Posterior
BigNBooks	Unif(0,1)	$ heta_B^{29}(1- heta_L)^1$	${\sf Beta}(29+1,1+1)$
LittleNBooks	Unif(0,1)	$ heta_L^5 (1- heta_L)^0$	Beta(5+1,0+1)

47 ▶

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 19 / 47
Posterior distributions for θ_B and θ_L

Posterior distributions for θ_B and θ_L

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

Posterior distributions for θ_B and θ_L

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

Posterior distributions for θ_B and θ_L

S. McKay Curtis (UW Dept. of Stat.)

August 30, 2010 19 / 47

Posterior distributions for θ_B and θ_L

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 19 / 47

Posterior distributions for θ_B and θ_L

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 19 / 47

Bayesian vs. Frequentist inference in practice Comparing the estimates

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

Outline

- 3 Bayesian Item Response Theory
- 4 Longitudinal Bayesian Item Response Theory

< (T) > <

∃ → < ∃</p>

- Test takers
- Test items

3

< (T) > <

-

- Test takers
 - Test takers have different levels of ability.
- Test items

-

A 🖓

- Test takers
 - Test takers have different levels of ability.
- Test items
 - Some test items are more difficult than others.

- Test takers
 - Test takers have different levels of ability.
- Test items
 - Some test items are more difficult than others.
 - Some test items are better (more "discriminating") than others.

Defining Greek symbols

• Consider a test with p items (j = 1, ..., p).

< A >

Defining Greek symbols

- Consider a test with p items $(j = 1, \dots, p)$.
- Let δ_j be the difficulty of item j.

47 ▶

Defining Greek symbols

- Consider a test with p items $(j = 1, \dots, p)$.
- Let δ_j be the difficulty of item j.
- Let α_j be the discrimination of item *j*.

Defining Greek symbols

- Consider a test with p items $(j = 1, \dots, p)$.
- Let δ_j be the difficulty of item j.
- Let α_j be the discrimination of item *j*.

$$Y_j = \left\{ egin{array}{cc} 1 & ext{if an individual endorses } j ext{-th item} \\ 0 & ext{otherwise} \end{array}
ight.$$

Defining Greek symbols

- Consider a test with p items $(j = 1, \dots, p)$.
- Let δ_j be the difficulty of item j.
- Let α_j be the discrimination of item *j*.

$$Y_j = \left\{ egin{array}{cc} 1 & ext{if an individual endorses } j ext{-th item} \ 0 & ext{otherwise} \end{array}
ight.$$

• Let θ be the ability of an individual test taker.

The probability of success on $j^{\rm th}$ item

< A >

The probability of success on $j^{\rm th}$ item

$$P(Y_j = 1| heta) = rac{1}{1 + e^{-lpha_j(heta - \delta_j)}}$$

3

The probability of success on $j^{\rm th}$ item

$$egin{aligned} P(Y_j = 1 | heta) &= rac{1}{1 + e^{-lpha_j(heta - \delta_j)}} \ P(Y_j = 0 | heta) &= 1 - rac{1}{1 + e^{-lpha_j(heta - \delta_j)}} \end{aligned}$$

S. McKay Curtis (UW Dept. of Stat.)

3

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with "average" difficulty $\delta_j = 0.0 \ (\alpha_j = 1.5)$

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses
An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below-average difficulty $\delta_j = -1.5$ ($\alpha_j = 1.5$)

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with average discrimination $\alpha_j = 1.5$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)
An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.)

A benefit of using an IRT model

• Loosely: Information is measure of how precisely we can estimate some quantity of interest (like *θ*).

A 🖓

A benefit of using an IRT model

- Loosely: Information is measure of how precisely we can estimate some quantity of interest (like θ).
- Precisely: If $\hat{\theta}$ is the MLE of θ , then

$$I(heta) = 1/V_ heta(\hat{ heta})$$

where $V_{\theta}(\hat{\theta})$ is the (asymptotic) variance of the MLE $\hat{\theta}$.

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

August 30, 2010 32 / 47

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

August 30, 2010 32 / 47

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

August 30, 2010 32 / 47

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 32 / 47

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 32 / 47

æ

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 32 / 47

æ

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 32 / 47

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 32 / 47

Item information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 32

3

32 / 47

Information Test information

Information for a test of p items:

$$I(heta) = \sum_{j=1}^{p} I_j(heta)$$

3

3

• • • • • • • • • • • •

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 34 / 47

э

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 34 / 47

э

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 35 / 47

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 35 / 47

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 35 / 47

Test information curves

S. McKay Curtis (UW Dept. of Stat.)

Bayesian IRT for the Masses

August 30, 2010 36 / 47

The likelihood

• For the $i^{\rm th}$ individual, we have

The likelihood

• For the $i^{\rm th}$ individual, we have

$$\bullet \ \theta_i, \ i=1,\ldots,n$$

The likelihood

• For the $i^{\rm th}$ individual, we have

•
$$\theta_i, i = 1, ..., n$$

• $(Y_{i1}, ..., Y_{ip}) = \mathbf{Y}_i$

47 ▶

• For the $i^{\rm th}$ individual, we have

$$\theta_i, i = 1, \dots, n$$
$$(Y_{i1}, \dots, Y_{ip}) = \mathbf{Y}_i$$

$$P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

3

- N

< 4 → <

• For the $i^{\rm th}$ individual, we have

$$\theta_i, i = 1, \dots, n$$

$$(Y_{i1}, \dots, Y_{ip}) = \mathbf{Y}_i$$

$$P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

• For a sample of *n* individuals, we have

• For the $i^{\rm th}$ individual, we have

$$\boldsymbol{\theta}_i, \ i = 1, \dots, n$$

$$(\boldsymbol{Y}_{i1}, \dots, \boldsymbol{Y}_{ip}) = \mathbf{Y}_i$$

$$P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

• For a sample of *n* individuals, we have

$$\mathbf{Y}_1, \ldots, \mathbf{Y}_n$$

• For the $i^{\rm th}$ individual, we have

$$\theta_i, i = 1, \dots, n$$
$$(Y_{i1}, \dots, Y_{ip}) = \mathbf{Y}_i$$

$$P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

• For a sample of *n* individuals, we have

$$\mathbf{Y}_1, \dots, \mathbf{Y}_n$$

$$P(\mathbf{Y}_1, \dots, \mathbf{Y}_n | \theta_1, \dots, \theta_n) = P(\mathbf{Y}_1 | \theta_1) \times \dots \times P(\mathbf{Y}_n | \theta_n)$$

• For the $i^{\rm th}$ individual, we have

$$\theta_i, i = 1, \dots, n$$
$$(Y_{i1}, \dots, Y_{ip}) = \mathbf{Y}_i$$

$$P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

• For a sample of *n* individuals, we have

$$\mathbf{Y}_1, \dots, \mathbf{Y}_n$$

$$P(\mathbf{Y}_1, \dots, \mathbf{Y}_n | \theta_1, \dots, \theta_n) = P(\mathbf{Y}_1 | \theta_1) \times \dots \times P(\mathbf{Y}_n | \theta_n)$$

Called the "likelihood."
IRT for a sample of n individuals

Estimating model parameters

Our model has many parameters: (θ₁,..., θ_n) = θ, (α₁,..., α_p) = α, and (δ₁,..., δ_p) = δ.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

IRT for a sample of n individuals

Estimating model parameters

- Our model has many parameters: (θ₁,..., θ_n) = θ, (α₁,..., α_p) = α, and (δ₁,..., δ_p) = δ.
- Likelihood-based estimates: Joint maximum likelihood, marginal maximum likelihood.

くほと くほと くほと

IRT for a sample of n individuals

Estimating model parameters

- Our model has many parameters: (θ₁,..., θ_n) = θ, (α₁,..., α_p) = α, and (δ₁,..., δ_p) = δ.
- Likelihood-based estimates: Joint maximum likelihood, marginal maximum likelihood.
- Nonlikelihood-based estimates: Weighted least squares (e.g., in Mplus).

くほと くほと くほと

• Unidimensionality.

Image: A (□)

э

- Unidimensionality.
 - Example violation: Math word problems

A 🖓

- Unidimensionality.
 - Example violation: Math word problems
- Local independence.

47 ▶

- Unidimensionality.
 - Example violation: Math word problems
- Local independence.
 - Example violation: Testlets

- Unidimensionality.
 - Example violation: Math word problems
- Local independence.
 - Example violation: Testlets
- More sophisticated models are often needed to correct for violations of these assumptions.

Outline

Bayesian Inference

- 2 Item Response Theory
- 3 Bayesian Item Response Theory
 - 4 Longitudinal Bayesian Item Response Theory

< (T) > <

E 5 4 E

Bayesian inference Recap

• For Bayesian inference, we need

3

э.

47 ▶

Bayesian inference Recap

• For Bayesian inference, we need

Likelihood

47 ▶

Bayesian inference Recap

- For Bayesian inference, we need
 - Likelihood
 - Priors for all unknown parameters

3. 3

A⊒ ▶ ∢ ∃

• θ_i ~ N(0, 1)

イロト イヨト イヨト イヨト

- $\theta_i \sim N(0,1)$
- $\delta_j \sim N(m_\delta, s_\delta^2)$

3

(本部)と 本語 と 本語を

- $\theta_i \sim N(0, 1)$
- $\delta_j \sim N(m_\delta, s_\delta^2)$
- $\alpha_j \sim N_{(0,\infty)}(m_\alpha, s_\delta^2)$

3

- 4 ⊒ →

< (T) > <

- $\theta_i \sim N(0,1)$
- $\delta_j \sim N\left(m_{\delta}, s_{\delta}^2\right)$
- $\alpha_j \sim \mathsf{N}_{(0,\infty)}(m_\alpha, s_\delta^2)$
- Values of m_{α} , s_{δ}^2 , m_{δ} , s_{δ}^2 can be chosen reflect prior knowledge of these items (from other studies?).

- $\theta_i \sim N(0,1)$
- $\delta_j \sim N\left(m_{\delta}, s_{\delta}^2\right)$
- $\alpha_j \sim \mathsf{N}_{(0,\infty)}(m_\alpha, s_\delta^2)$
- Values of m_{α} , s_{δ}^2 , m_{δ} , s_{δ}^2 can be chosen reflect prior knowledge of these items (from other studies?).
- OR values of s_{α}^2 and s_{δ}^2 can be chosen to be large to reflect "ignorance."

- $\theta_i \sim N(0,1)$
- $\delta_j \sim N\left(m_{\delta}, s_{\delta}^2\right)$
- $\alpha_j \sim \mathsf{N}_{(0,\infty)}(m_\alpha, s_\delta^2)$
- Values of m_{α} , s_{δ}^2 , m_{δ} , s_{δ}^2 can be chosen reflect prior knowledge of these items (from other studies?).
- OR values of s_{α}^2 and s_{δ}^2 can be chosen to be large to reflect "ignorance."
- ۲

$$p(\theta, \alpha, \delta) = p(\theta_1) \cdots p(\theta_n) p(\alpha_1) \cdots p(\alpha_p) p(\delta_1) \cdots p(\delta_p)$$

• The posterior distribution for IRT parameters

 $p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$

___ ▶

• The posterior distribution for IRT parameters

 $p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$

• Too complicated (not a simple $Beta(\kappa_1, \kappa_2)$)

$$p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$$

- Too complicated (not a simple $Beta(\kappa_1, \kappa_2)$)
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.

$$p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$$

- Too complicated (not a simple $\text{Beta}(\kappa_1,\kappa_2)$)
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.

$$p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$$

- Too complicated (not a simple $\text{Beta}(\kappa_1,\kappa_2)$)
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.
 - Open source (free!).

$$p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$$

- Too complicated (not a simple $Beta(\kappa_1, \kappa_2)$)
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.
 - Open source (free!).
 - Can be called from other software (R, SAS, Stata).

BUGS code for IRT

📑 Untitled - Notepad File Edit Format View Help model{ for (i in 1:n) { for (j in 1:p) { $Y[i, j] \sim dbern(prob[i, j])$ loqit(prob[i, j]) <- alpha[j]*(theta[i] - delta[j])</pre> theta[i] ~ dnorm(0.0, 1.0) for (j in 1:p) { delta[j] ~ dnorm(m.delta, pr.delta) alpha[j] ~ dnorm(m.alpha, pr.alpha) I(0,) pr.delta <- pow(s.delta, -2) pr.alpha <- pow(s.alpha, -2)

- 3-

- 4 週 ト - 4 三 ト - 4 三 ト

Outline

Bayesian Inference

- 2 Item Response Theory
- 3 Bayesian Item Response Theory

4 Longitudinal Bayesian Item Response Theory

E 5 4 E

< 4 →

Longitudinal Bayesian Item Response Theory

• Easy to change BUGS code to account for longitudinal data.

Longitudinal Bayesian Item Response Theory

- Easy to change BUGS code to account for longitudinal data.
- For examples, see paper "BUGS Code for Item Reponse Theory."

Longitudinal Bayesian Item Response Theory

- Easy to change BUGS code to account for longitudinal data.
- For examples, see paper "BUGS Code for Item Reponse Theory."
- Join Paul's workgroup.