Bayesian IRT for the Masses

S. McKay Curtis

University of Washington Department of Statistics

August 30, 2010

S. McKay Curtis (UW Dept. of Stat.) Bayesian IRT for the Masses August 30, 2010 1/47

4 日下

a.

目

押 トマミト マミト

Acknowledgments

Disclaimers?

- Funded in part by Grant R13AG030995-01A1 from the National Institute on Aging
- The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

 2990

(ロ) (個) (差) (差) (差)

Outline

- 3 [Bayesian Item Response Theory](#page-196-0)
- 4 [Longitudinal Bayesian Item Response Theory](#page-0-1)

4 0 8

Section

Outline

- [Item Response Theory](#page-79-0)
- [Bayesian Item Response Theory](#page-196-0)
- 4 [Longitudinal Bayesian Item Response Theory](#page-0-1)

4 日下

目

重き na m≊

∢ 何 ≯ →

 QQ

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 6 / 47

重

 2990

イロト イ部 トメ ヨ トメ ヨト

Consider the following statements. . .

4 日下

4 母 8 4

Biskop 舌 目

Consider the following statements. . .

 \bullet The probability of a coin toss landing heads is $1/2$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.

4 0 8

Consider the following statements. . .

- \bullet The probability of a coin toss landing heads is $1/2$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.
- **2** The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am

Consider the following statements. . .

- \bullet The probability of a coin toss landing heads is $1/2$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.
- **2** The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am
- **3** The probability that James Madison wrote the disputed Federalist papers is > 0.999 . Mosteller and Wallace (1964).

4.0.3

 QQ

化重 网络重

Consider the following statements. . .

- \bullet The probability of a coin toss landing heads is $1/2$. John Kerrich flipped a coin 10,000 times while a POW in WWII. He obtained 5,067 heads.
- **2** The probability that the Republicans will control the House of Representatives after the 2010 Congressional elections is 0.735. Intrade odds, 26 Aug 2010, 10:50am
- **3** The probability that James Madison wrote the disputed Federalist papers is > 0.999 . Mosteller and Wallace (1964).
- **4** The probability that God exists is 0.67. Stephen D. Unwin, The Probability of God: A Simple Calculation that Proves the Ultimate Truth.

4 日下

目

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 7 / 47

4 日下

a. \rightarrow ∍ × \mathcal{A} Þ

÷,

4 D F

 \rightarrow ∍ × \prec Þ

D.

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 7 / 47

4 日下

a. \rightarrow × э $\,$ \rightarrow \equiv \rightarrow 重

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 7 / 47

4 D F

 \rightarrow ∍ × \prec Þ

D.

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 7 / 47

4 日下

a. \rightarrow ∍ \sim

x 重 D.

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 7 / 47

4 日下

a. \rightarrow ∍ \sim \rightarrow

重

D.

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 7 / 47

4 日下

a. \rightarrow ∍ \mathbf{p} \sim \Rightarrow D.

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 7 / 47

4 日下

× 一 \rightarrow ∍ \sim \rightarrow

重

D.

4 日下

 \mathcal{A} a. \rightarrow × ÷. \mathbf{p} \sim \Rightarrow D.

Technical definition

D.

 299

イロト イ部 トメ ヨ トメ ヨト

Technical definition

Definition: Probability

Probability is a set function $P(\cdot)$ defined on subsets of a space Ω that satisfies the following properties:

$$
\bullet \ \ P(\Omega)=1
$$

- **2** For a subset $A \subset \Omega$, $P(A) \ge 0$
- **3** If A_1, A_2, \ldots are disjoint subsets of Ω then

$$
P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots
$$

D.

 QQ

化重 网络重

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

A frequentist statistician $^1\!\ldots$

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

A frequentist statistician $^1\!\ldots$

 1 Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

- A frequentist statistician $^1\!\ldots$
	- \triangleright will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).

 1 Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

- A frequentist statistician $^1\!\ldots$
	- \triangleright will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
	- \triangleright believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.

 1 Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

- A frequentist statistician $^1\!\ldots$
	- \triangleright will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
	- \triangleright believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.
- A Bayesian statistician²...

 1 Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

- A frequentist statistician $^1\!\ldots$
	- \triangleright will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
	- \triangleright believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.
- A Bayesian statistician²...

 2 And so is this.

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 9/47

 1 Obviously, this is just a caricature.

Bayesian statisticians vs. Frequentist statisticians

If probability is just a set function with special properties, then the question is "What should we use probability for?"

- A frequentist statistician $^1\!\ldots$
	- \triangleright will use probability only to model uncertainty in the outcomes of repeatable experiments (e.g., like the toss of a coin).
	- \triangleright believes probability is an objective property—the long-run relative frequency (hence the name "frequentist")—of some process that generates data.
- A Bayesian statistician²...
	- \triangleright will use probability to model uncertainty from any source (e.g., that a coin toss lands heads or that Madison wrote the disputed Federalist papers.)

 2 And so is this.

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 9/47

 1 Obviously, this is just a caricature.

An example using amazon.com seller ratings

An example using amazon.com seller ratings

You want to buy a used book on amazon.com

 \leftarrow

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

• Which book seller should you choose?

An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

• Which book seller should you choose?

In LittleNBooks has a higher rating, but...
An example using amazon.com seller ratings

- You want to buy a used book on amazon.com
- Your book is being sold by two "marketplace" sellers for the same price and in the same condition.

• Which book seller should you choose?

- In LittleNBooks has a higher rating, but...
- \blacktriangleright LittleNBooks only has five ratings.

A mathematical model for bookseller ratings

• Reviewers' ratings $=$ repeatable event

4 0 8

 Ω

A mathematical model for bookseller ratings

- Reviewers' ratings $=$ repeatable event
	- Frequentists \heartsuit probability.

4 0 8

 Ω

A mathematical model for bookseller ratings

• Reviewers' ratings $=$ repeatable event

- Frequentists \heartsuit probability.
- \blacktriangleright Bayesians \heartsuit probability.

4 0 8

A mathematical model for bookseller ratings

- Reviewers' ratings $=$ repeatable event
	- Frequentists \heartsuit probability.
	- \blacktriangleright Bayesians \heartsuit probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_I) .

A mathematical model for bookseller ratings

- Reviewers' ratings $=$ repeatable event
	- Frequentists \heartsuit probability.
	- \blacktriangleright Bayesians \heartsuit probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_I) .

$$
\blacktriangleright \ \ Y_i^{(B)} = \left\{ \begin{array}{ll} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{array} \right.
$$

A mathematical model for bookseller ratings

• Reviewers' ratings $=$ repeatable event

- Frequentists \heartsuit probability.
- \blacktriangleright Bayesians \heartsuit probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_I) .

►
$$
Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}
$$

\n► $P(Y_i^{(B)} = 1 | \theta_B) = \theta_B$

A mathematical model for bookseller ratings

• Reviewers' ratings $=$ repeatable event

- Frequentists \heartsuit probability.
- \blacktriangleright Bayesians \heartsuit probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_I) .

►
$$
Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}
$$

\n► $P(Y_i^{(B)} = 1 | \theta_B) = \theta_B$
\n► $Y_i^{(L)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$

A mathematical model for bookseller ratings

• Reviewers' ratings $=$ repeatable event

- Frequentists \heartsuit probability.
- \blacktriangleright Bayesians \heartsuit probability.
- A simple model posits that there exists some true probability of a positive review for BigNBooks (θ_B) and LittleNBooks (θ_I) .

►
$$
Y_i^{(B)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}
$$

\n► $P(Y_i^{(B)} = 1 | \theta_B) = \theta_B$
\n► $Y_i^{(L)} = \begin{cases} 1 & \text{if review positive} \\ 0 & \text{if review negative} \end{cases}$
\n► $P(Y_i^{(L)} = 1 | \theta_L) = \theta_L$

Bayesian vs. Frequentist inference in practice The likelihood

Assume $Y^{(B)}_1$ $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = \mathbf{Y}^{(B)}$ and $Y_1^{(L)}$ $Y_1^{(L)}, \ldots, Y_5^{(L)} = \mathbf{Y}^{(L)}$ independent, then

4 日下

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA}

Bayesian vs. Frequentist inference in practice The likelihood

Assume $Y^{(B)}_1$ $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = \mathbf{Y}^{(B)}$ and $Y_1^{(L)}$ $Y_1^{(L)}, \ldots, Y_5^{(L)} = \mathbf{Y}^{(L)}$ independent, then

$$
P(Y_1^{(B)} = 1, ..., Y_{29}^{(B)} = 1, Y_{30}^{(B)} = 0 | \theta_B) = P(\mathbf{Y}^{(B)} | \theta_B)
$$

= $\theta_B^{29} (1 - \theta_B)$

 \bullet

4 日下

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA}

Bayesian vs. Frequentist inference in practice The likelihood

Assume $Y^{(B)}_1$ $Y_1^{(B)}, \ldots, Y_{30}^{(B)} = \mathbf{Y}^{(B)}$ and $Y_1^{(L)}$ $Y_1^{(L)}, \ldots, Y_5^{(L)} = \mathbf{Y}^{(L)}$ independent, then

$$
P(Y_1^{(B)} = 1, ..., Y_{29}^{(B)} = 1, Y_{30}^{(B)} = 0 | \theta_B) = P(\mathbf{Y}^{(B)} | \theta_B)
$$

= $\theta_B^{29} (1 - \theta_B)$

$$
P(Y_1^{(L)} = 1, ..., Y_5^{(L)} = 1 | \theta_L) = P(\mathbf{Y}^{(L)} | \theta_L) = \theta_L^5
$$

4 日下

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 13 / 47

 \bullet

 \bullet

 \overline{AB} \rightarrow \overline{B} \rightarrow Ω

 θ_B and θ_L are fixed, unknown constants \rightarrow probability

4 0 8

 θ_B and θ_L are fixed, unknown constants \rightarrow probability MLE: $\hat{\theta} = \frac{\text{# positive reviews}}{\text{total # requires}}$ total $\#$ reviews

4 D F

 θ_B and θ_L are fixed, unknown constants \rightarrow probability MLE: $\hat{\theta} = \frac{\text{# positive reviews}}{\text{total # requires}}$ total $\#$ reviews

• Confidence Interval:
$$
\hat{\theta} \pm z_{\alpha/2} \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}
$$

 Ω

 θ_B and θ_L are fixed, unknown constants \rightarrow probability MLE: $\hat{\theta} = \frac{\text{# positive reviews}}{\text{total # requires}}$ total $\#$ reviews $\sqrt{\hat{\theta}(1-\hat{\theta})}$

• Confidence Interval:
$$
\hat{\theta} \pm z_{\alpha/2} \sqrt{\frac{\theta(1-\theta)}{n}}
$$

Frequentist inference

 QQQ

母 ト イヨ ト イヨ ト

 \bullet θ_B and θ_I are fixed, unknown constants.

4.0.3

画

 QQ

 \sim 舌

n ⊱ 1

- \bullet θ_B and θ_I are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .

4 0 8

÷

- \bullet θ_B and θ_I are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .
- A Bayesian must choose prior distributions (often shortened to "priors") for θ_B and θ_L

- \bullet θ_B and θ_I are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .
- A Bayesian must choose prior distributions (often shortened to "priors") for θ_B and θ_L
- For this problem $p(\theta_B) = p(\theta_L) = \text{Unif}(0,1).$

 QQQ

- \bullet θ_B and θ_I are fixed, unknown constants.
- A Bayesian uses probability to represent uncertainty about θ_B and θ_L .
- A Bayesian must choose prior distributions (often shortened to "priors") for θ_B and θ_I
- For this problem $p(\theta_B) = p(\theta_I) = \text{Unif}(0, 1).$

 Ω

The posterior distribution

Consider θ_B (things are similar for θ_L)

 $\rho(\theta_B)$ represents our uncertainty about θ_B before observing the data. The Bayesian wants

 $p(\theta_B | \mathbf{Y}^{(B)})$

the posterior distribution.

The posterior distribution

Consider θ_B (things are similar for θ_L)

 ϕ $p(\theta_B)$ represents our uncertainty about θ_B before observing the data. The Bayesian wants

$$
\rho(\theta_B|\mathbf{Y}^{(B)})
$$

the posterior distribution.

• The posterior distribution represents our uncertainty about θ_B after observing the data.

4 0 8

 \rightarrow

 \sim 14.1 画

4 0 8

∢ ⁄<mark>⊡</mark> ≯

 \rightarrow

画

画

 QQ

 \sim \rightarrow \equiv \rightarrow

4 0 8

ÆP ⊳

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 17 / 47

4 0 8

 \rightarrow

 \sim -4 画

4 0 8

э

4 0 8

э

4 0 8

э

4 日下

画

 \sim

 -4

*一*一

4.0.3

 \rightarrow

画

舌

 \sim

4 日下

*一*一

 \sim -4 画

Posterior distributions

4.0.3

n ⊱ 1

画

 QQ

ヨメ メヨメ

Posterior distributions

4 日下

 \rightarrow

画

 QQ

ヨメ メヨメ

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 19 / 47
Posterior distributions for θ_B and θ_L

Posterior distributions for θ_B and θ_L

Posterior distributions for θ_B and θ_L

Posterior distributions for θ_B and θ_L

Posterior distributions for θ_B and θ_L

Posterior distributions for θ_B and θ_L

Bayesian vs. Frequentist inference in practice Comparing the estimates

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 20 / 47

Outline

- [Bayesian Item Response Theory](#page-196-0)
- 4 [Longitudinal Bayesian Item Response Theory](#page-0-1)

4 日下

4 母 8 4

画

正々 メラメ

- **o** Test takers
- **o** Test items

 \leftarrow \Box \rightarrow

4 母 8 4

活

正々 メラ

- **o** Test takers
	- \blacktriangleright Test takers have different levels of ability.
- **o** Test items

4 日下

4 f →

画

B.X 舌

 -4

- **•** Test takers
	- \blacktriangleright Test takers have different levels of ability.
- Test items
	- \triangleright Some test items are more difficult than others.

4 0 8

 \rightarrow

 \sim

画

- **o** Test takers
	- \blacktriangleright Test takers have different levels of ability.
- **o** Test items
	- \triangleright Some test items are more difficult than others.
	- Some test items are better (more "discriminating") than others.

4 D F

 Ω

Defining Greek symbols

• Consider a test with p items $(j = 1, \ldots, p)$.

4.0.3

同→

画

Defining Greek symbols

- Consider a test with p items $(j = 1, \ldots, p)$.
- Let δ_i be the difficulty of item j.

4.0.3

画

Defining Greek symbols

- Consider a test with p items $(j = 1, \ldots, p)$.
- Let δ_i be the difficulty of item j.
- Let α_i be the discrimination of item j.

 \leftarrow

÷

Defining Greek symbols

- Consider a test with p items $(j = 1, \ldots, p)$.
- Let δ_i be the difficulty of item j.
- Let α_i be the discrimination of item j.

Let

$$
Y_j = \begin{cases} 1 & \text{if an individual endorses } j\text{-th item} \\ 0 & \text{otherwise} \end{cases}
$$

 \leftarrow

÷

Defining Greek symbols

- Consider a test with p items $(j = 1, \ldots, p)$.
- Let δ_i be the difficulty of item *j*.
- Let α_i be the discrimination of item *j*.

Let

$$
Y_j = \begin{cases} 1 & \text{if an individual endorses } j\text{-th item} \\ 0 & \text{otherwise} \end{cases}
$$

• Let θ be the ability of an individual test taker.

The probability of success on j^{th} item

4 日下

4 f →

画

 \sim 舌

 -4

The probability of success on j^{th} item

$$
P(\textit{Y}_{j}=1|\theta)=\frac{1}{1+e^{-\alpha_{j}(\theta-\delta_{j})}}
$$

4 日下

4 f →

画

 \sim 舌

 -4

The probability of success on j^{th} item

$$
P(Y_j = 1 | \theta) = \frac{1}{1 + e^{-\alpha_j(\theta - \delta_j)}}
$$

$$
P(Y_j = 0 | \theta) = 1 - \frac{1}{1 + e^{-\alpha_j(\theta - \delta_j)}}
$$

4 日下

4 f →

画

 \sim 舌

÷ -4

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with "average" difficulty $\delta_i = 0.0$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 25 / 47

An item with above-average difficulty $\delta_j = 1.5$ ($\alpha_j = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47
An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with above-average difficulty $\delta_i = 1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 26 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with below-average difficulty $\delta_i = -1.5$ ($\alpha_i = 1.5$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 27 / 47

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 28 / 47

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 28 / 47

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 28 / 47

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 28 / 47

An item with average discrimination $\alpha_j = 1.5$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 28 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47

An item with below average discrimination $\alpha_j = 0.25$ ($\delta_j = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 29 / 47
An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

An item with above average discrimination $\alpha_j = 8.0$ ($\delta_i = 0.0$)

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 30 / 47

A benefit of using an IRT model

Loosely: Information is measure of how precisely we can estimate some quantity of interest (like θ).

4.0.3

э

 QQ

A benefit of using an IRT model

- Loosely: Information is measure of how precisely we can estimate some quantity of interest (like θ).
- Precisely: If $\hat{\theta}$ is the MLE of θ , then

$$
I(\theta)=1/V_{\theta}(\hat{\theta})
$$

where $V_{\theta}(\hat{\theta})$ is the (asymptotic) variance of the MLE $\hat{\theta}.$

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

 2990

重

Item information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 32 / 47

重

Information Test information

Information for a test of p items:

$$
I(\theta) = \sum_{j=1}^p I_j(\theta)
$$

D.

メロト メ押 トメミト メミ

Test information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 34 / 47

Test information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 34 / 47

D.

Test information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 34 / 47

重

Test information curves

Test information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 35 / 47

Test information curves

Test information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 35 / 47

重

Test information curves

S. McKay Curtis (UW Dept. of Stat.) [Bayesian IRT for the Masses](#page-0-0) August 30, 2010 36 / 47

重

IRT for a sample of n individuals

The likelihood

For the i^{th} individual, we have

4.0.3

 \rightarrow

 \sim

目

IRT for a sample of n individuals

The likelihood

For the i^{th} individual, we have

$$
\blacktriangleright \theta_i, i=1,\ldots,n
$$

4.0.3

 \rightarrow

 \sim

目

IRT for a sample of n individuals

The likelihood

For the i^{th} individual, we have

$$
\begin{array}{ll} \star & \theta_i, \ i = 1, \dots, n \\ \star & \left(Y_{i1}, \dots, Y_{ip} \right) = \mathbf{Y}_i \end{array}
$$

4 日下

ÆP ⊳

 \sim

э

 QQ

For the i^{th} individual, we have

$$
\begin{array}{ll} \star & \theta_i, i = 1, \ldots, n \\ \star & (Y_{i1}, \ldots, Y_{ip}) = \mathbf{Y}_i \end{array}
$$

$$
P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)
$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

4 日下

目

∋ »

4 何 ▶

For the i^{th} individual, we have

$$
\begin{array}{ll} \star & \theta_i, i = 1, \ldots, n \\ \star & (Y_{i1}, \ldots, Y_{ip}) = \mathbf{Y}_i \end{array}
$$

$$
P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)
$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

\bullet For a sample of *n* individuals, we have

 \leftarrow

 Ω

For the i^{th} individual, we have

$$
\begin{array}{ll} \star & \theta_i, i = 1, \ldots, n \\ \star & (Y_{i1}, \ldots, Y_{ip}) = \mathbf{Y}_i \end{array}
$$

$$
P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)
$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

 \bullet For a sample of *n* individuals, we have

$$
\blacktriangleright \mathsf{Y}_1, \ldots, \mathsf{Y}_n
$$

 \leftarrow

 Ω

For the i^{th} individual, we have

$$
\begin{array}{ll} \star & \theta_i, i = 1, \ldots, n \\ \star & (Y_{i1}, \ldots, Y_{ip}) = \mathbf{Y}_i \end{array}
$$

$$
P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)
$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

 \bullet For a sample of *n* individuals, we have

$$
\sum_{n=1}^{\infty} \mathbf{Y}_{1}, \dots, \mathbf{Y}_{n}
$$

$$
P(\mathbf{Y}_{1}, \dots, \mathbf{Y}_{n} | \theta_{1}, \dots, \theta_{n}) = P(\mathbf{Y}_{1} | \theta_{1}) \times \dots \times P(\mathbf{Y}_{n} | \theta_{n})
$$

 \leftarrow

 Ω

For the i^{th} individual, we have

$$
\begin{array}{ll} \star & \theta_i, i = 1, \ldots, n \\ \star & (Y_{i1}, \ldots, Y_{ip}) = \mathbf{Y}_i \end{array}
$$

$$
P(\mathbf{Y}_i|\theta_i) = P(Y_{i1} = y_{i1}, \dots, Y_{ip} = y_{ip}|\theta_i)
$$

= $P(Y_{i1} = y_{i1}|\theta_i) \times \dots \times P(Y_{i1} = y_{ip}|\theta_i)$

 \bullet For a sample of *n* individuals, we have

$$
\mathbf{Y}_1, \dots, \mathbf{Y}_n
$$

$$
P(\mathbf{Y}_1, \dots, \mathbf{Y}_n | \theta_1, \dots, \theta_n) = P(\mathbf{Y}_1 | \theta_1) \times \dots \times P(\mathbf{Y}_n | \theta_n)
$$

 \blacktriangleright Called the "likelihood."

4 0 8
IRT for a sample of *individuals*

Estimating model parameters

Our model has many parameters: $(\theta_1, \ldots, \theta_n) = \theta$, $(\alpha_1, \ldots, \alpha_p) = \alpha$, and $(\delta_1, \ldots, \delta_p) = \delta$.

目

 QQ

 \equiv \rightarrow

4 0 8

IRT for a sample of *individuals*

Estimating model parameters

- **Our model has many parameters:** $(\theta_1, \ldots, \theta_n) = \theta$, $(\alpha_1, \ldots, \alpha_p) = \alpha$, and $(\delta_1, \ldots, \delta_n) = \delta$.
- Likelihood-based estimates: Joint maximum likelihood, marginal maximum likelihood.

4 0 8

D.

IRT for a sample of *individuals*

Estimating model parameters

- **Our model has many parameters:** $(\theta_1, \ldots, \theta_n) = \theta$, $(\alpha_1, \ldots, \alpha_p) = \alpha$, and $(\delta_1, \ldots, \delta_n) = \delta$.
- Likelihood-based estimates: Joint maximum likelihood, marginal maximum likelihood.
- Nonlikelihood-based estimates: Weighted least squares (e.g., in Mplus).

D.

 QQQ

· Unidimensionality.

4 0 8

→ ← 伊 ▶ → 王 ▶ →

重

重

- **·** Unidimensionality.
	- \blacktriangleright Example violation: Math word problems

4 日下

目

∋ » 舌

4 何 ▶ \mathcal{A} . \sim

- **·** Unidimensionality.
	- \blacktriangleright Example violation: Math word problems
- **·** Local independence.

4.0.3

ÆP ⊳ ÷ 目

 \sim

- **•** Unidimensionality.
	- \blacktriangleright Example violation: Math word problems
- Local independence.
	- \blacktriangleright Example violation: Testlets

4.0.3

目

 QQ

 \sim

 \rightarrow

- **•** Unidimensionality.
	- \triangleright Example violation: Math word problems
- Local independence.
	- \blacktriangleright Example violation: Testlets
- More sophisticated models are often needed to correct for violations of these assumptions.

 \leftarrow

Outline

[Longitudinal Bayesian Item Response Theory](#page-0-1)

4 日下

4 何 ▶

E

The South Truck

Bayesian inference Recap

• For Bayesian inference, we need

4.0.3

 \rightarrow

目

舌

 \sim \mathcal{A}

Bayesian inference Recap

• For Bayesian inference, we need

1 Likelihood

4.0.3

 \rightarrow ÷ \sim \mathcal{A} 目

舌

Bayesian inference Recap

- **•** For Bayesian inference, we need
	- **1** Likelihood
	- 2 Priors for all unknown parameters

4.0.3

目

 \sim

 \rightarrow ÷ -4

 \bullet $\theta_i \sim N(0,1)$

D.

 299

→ イ団 メ イ ヨ メ イ ヨ メ

4 0 8

- \bullet $\theta_i \sim N(0,1)$
- $\delta_j \sim \mathsf{N}\big(m_\delta, s_\delta^2\big)$

4 日下

4 f → × э. D.

 \sim 一本 重 下

- \bullet $\theta_i \sim N(0, 1)$
- $\delta_j \sim \mathsf{N}\big(m_\delta, s_\delta^2\big)$
- $\alpha_j \sim \mathsf{N}_{(0,\infty)}(m_\alpha,s_\delta^2)$

4 0 8

∢ ⁄<mark>⊡</mark> ≯

目

 \rightarrow \equiv \rightarrow

÷ \sim

- \bullet $\theta_i \sim N(0,1)$
- $\delta_j \sim \mathsf{N}\big(m_\delta, s_\delta^2\big)$
- $\alpha_j \sim \mathsf{N}_{(0,\infty)}(m_\alpha,s_\delta^2)$
- Values of m_α , s_δ^2 , m_δ , s_δ^2 can be chosen reflect prior knowledge of these items (from other studies?).

 \leftarrow

÷

- \bullet $\theta_i \sim N(0,1)$
- $\delta_j \sim \mathsf{N}\big(m_\delta, s_\delta^2\big)$
- $\alpha_j \sim \mathsf{N}_{(0,\infty)}(m_\alpha,s_\delta^2)$
- Values of m_α , s_δ^2 , m_δ , s_δ^2 can be chosen reflect prior knowledge of these items (from other studies?).
- OR values of s^2_α and s^2_δ can be chosen to be large to reflect "ignorance."

つへへ

- \bullet $\theta_i \sim N(0,1)$
- $\delta_j \sim \mathsf{N}\big(m_\delta, s_\delta^2\big)$
- $\alpha_j \sim \mathsf{N}_{(0,\infty)}(m_\alpha,s_\delta^2)$
- Values of m_α , s_δ^2 , m_δ , s_δ^2 can be chosen reflect prior knowledge of these items (from other studies?).
- OR values of s^2_α and s^2_δ can be chosen to be large to reflect "ignorance."
- \bullet

$$
p(\theta, \alpha, \delta) = p(\theta_1) \cdots p(\theta_n) p(\alpha_1) \cdots p(\alpha_p) p(\delta_1) \cdots p(\delta_p)
$$

• The posterior distribution for IRT parameters

 $p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$

4 日下

目

• The posterior distribution for IRT parameters

 $p(\theta, \alpha, \delta | \mathbf{Y}_1, \dots, \mathbf{Y}_n)$

• Too complicated (not a simple Beta (κ_1, κ_2))

 \leftarrow

• The posterior distribution for IRT parameters

$$
p(\theta, \alpha, \delta | \mathbf{Y}_1, \ldots, \mathbf{Y}_n)
$$

- Too complicated (not a simple Beta (κ_1, κ_2))
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.

• The posterior distribution for IRT parameters

$$
p(\theta, \alpha, \delta | \mathbf{Y}_1, \ldots, \mathbf{Y}_n)
$$

- Too complicated (not a simple Beta (κ_1, κ_2))
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.

つひひ

• The posterior distribution for IRT parameters

$$
p(\theta, \alpha, \delta | \mathbf{Y}_1, \ldots, \mathbf{Y}_n)
$$

- Too complicated (not a simple Beta (κ_1, κ_2))
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.
	- \triangleright Open source (free!).

 Ω

• The posterior distribution for IRT parameters

$$
p(\theta, \alpha, \delta | \mathbf{Y}_1, \ldots, \mathbf{Y}_n)
$$

- Too complicated (not a simple Beta (κ_1, κ_2))
- Markov chain Monte Carlo (MCMC) to simulate random draws from the posterior distribution.
- BUGS (WinBUGS, OpenBUGS, JAGS) can do this for you.
	- \triangleright Open source (free!).
	- \triangleright Can be called from other software (R, SAS, Stata).

つへへ

BUGS code for IRT

```
Untitled - Notepad
File Edit Format View Help
model{
  for (i \text{ in } 1:n) {
    for (i \text{ in } 1:p)Y[i, j] \sim dbern(prob[i, j])
       logit(prob[i, j]) \leq - alpha[j] * (theta[i] - delta[j])theta[i] \sim dnorm(0.0, 1.0)
  )
  for (i \text{ in } 1:p)delta[i] \sim dom(m.delta, pr.delta)alpha[j] \sim dnorm(m.alpha, pr.alpha) I(0, )pr.delta \leq pow(s.delta, -2)
  pr.alpha \leq pow(s.alpha, -2)
```
 $=$ Ω

 $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \vert \rangle$

Outline

- [Item Response Theory](#page-79-0)
- [Bayesian Item Response Theory](#page-196-0)

4 日下

∢ ⁄<mark>⊡</mark> ≯

Þ

 \sim \sim \equiv

Longitudinal Bayesian Item Response Theory

Easy to change BUGS code to account for longitudinal data.

4 0 8

 Ω

Longitudinal Bayesian Item Response Theory

- Easy to change BUGS code to account for longitudinal data.
- For examples, see paper "BUGS Code for Item Reponse Theory."

4 0 8

Longitudinal Bayesian Item Response Theory

- Easy to change BUGS code to account for longitudinal data.
- For examples, see paper "BUGS Code for Item Reponse Theory."
- Join Paul's workgroup.

4 0 8