Overview of quantitative neuroimaging – MRI

Charles DeCarli, MD

Director, UC Davis Alzheimer's Disease Center, Imaging of Dementia and Aging (IDeA) Laboratory and ADNI MRI Core Investigator With Special Thanks to Owen Carmichael, PhD

Assistant Professor of Neurology, Associate Director of the IDeA Laboratory and Computer Scientist, Neuroimaging expert extraordinaire!

Disclosure: Funded ADNI investigator, NIH support

Overview

Introduction to imaging
Image Acquisition
Artifacts
Quality control
Analyses

Medical images

 The key distinguishing characteristic of medical images is that you get to look at the interior of objects

Instead of a 2D array of data (like photos)...

 You get a full 3D volume of data: for each (x,y,z) location in space you have a measurement of some aspect of the material at (x,y,z)

The images are referred to as volumetric images or tomographs

Medical image acquisition

Scientific principles that underlie MRI and PET:

If you shoot beams of electromagnetic energy into biological tissue, the amount of time it takes for the tissue to release that energy depends on the type of material

 If you inject biological tissue with a radioactive substance, you can tell where the substance goes by detecting the radioactive decay

Magnetic Resonance Imaging

• Basics:

- If you excite atoms (beam energy into them) they gradually relax (let off the energy over time)
- How quickly they let off the energy depends on the structure of the atom and the organization of the atoms surrounding them: so if you can record how quickly a set of atoms lets off the energy you beam into it, you can figure out what material the atoms are in

Magnetic Resonance Imaging

- Generally, they let varying amounts of energy off in all directions
- So if you beam energy into a bunch of atoms and set up detectors all around it to detect the energy being let off, the signal going into the detectors will be somewhat random

Magnetic resonance imaging (MRI)

- However, some atoms have asymmetries: atoms like ¹H, ³¹P, ¹³C, ¹⁹F have a non-zero nuclear spin
 Valence electrons spin around the nucleus in a particular orbit and induce a tiny magnetic field along the atomic pole
- Normally, these poles are oriented at arbitrary orientations

http://www.simplyphysics.com

Magnetic resonance imaging (MRI)

• But if you apply an external magnetic field (B0), the atomic poles tend to line up along the direction of that field. They spin at some angle with respect to the B0 direction; the stronger B0 is, the more they align with B0

Magnetic resonance imaging (MRI)

- The radio-frequency (RF) pulse
 - Perturbs the spin and
 - They gradually release their energy in predictable directions while reorienting themselves toward B0
- Energy is released orthogonal to B0
- By having a detector orthogonal to B0, we can record how quickly the precessing atoms release their energy, and thus back out the material properties of the atoms

T1 and T2

T1-exponential recovery of Mz in time T2-exponentia decay of signal

Tissue Specific T1/T2

Magnetic resonance imaging

- A receiver picks up this emitted energy after the RF pulse is administered.
- Based on the time course of energy captured by the receiver, we back out material properties at each spatial location that is consistent with all the receiver data.

Positron Emission Tomography

- Let's say you have a radioactive substance (a radioisotope) at some point in space
- "Radioactive" means it decays by emitting highenergy charged particles
- When it emits a positivelycharged particle-- a positron-it smashes into an electron, which annihilates both of them
- The by-product of this reaction is a pair of highenergy photons (gamma rays) that shoot off 180 degrees apart from each other

Positron Emission Tomography

Positron Emission Tomography

- If we can detect two emitted gamma rays that are 180 degrees apart from each other and hit the detectors at the same time, we know that a positron must have been emitted somewhere along the line between them: the line of response
- The radioisotope emits many, many positrons that cause gamma rays to shoot off in all directions
- Intersect all the lines of response to determine where in space the radioisotope is
- In this way the gamma rays act as a sort of "homing beacon" for the radioisotope

Positron emission tomography Specific Uses

- Attach radioisotopes to molecules that are used in normal metabolism (e.g. F18)
 - Radiation is emitted during metabolism
- Attach radioisotopes to drugs acting at specific receptors
 - Radiation is emitted during interaction with receptor
- Attach radioisotopes to molecules that interact with specific protein confirmations (e.g. PiB)
 - Radiation is emitted when molecule interacts with protein

Key problem with PET

Each radioisotope has a half-life: it only spits out positrons for a short period of time
Fluorine has a half life of 2 hours
Heavy oxygen is more like 20 minutes
Meaning you better be VERY close to a cyclotron to use 150.

Summary

MRI examines how magnetic-fieldaligned materials give off RF energy
High spatial resolution
High tissue contract that can be varied
PET attaches radioactive isotopes to molecules used in metabolism, receptors and even protein-protein interaction

Issues of Image Quality

Signal to Noise of Various Systems

Effect of SNR on Segmentation

NeuroImage 49 (2010) 2123-2133

Artifacts

Movement
Foreign bodies
Field Inhomogeneity B0:Geometric Distortion B1: Intensity inhomogeneity

MR Artifacts: Motion

Raw image

Image after correction for motion

 Motion is a problem for all imaging modalities; they all assume the subject is sitting perfectly still

MR Artifacts: Motion

- Correct for respiratory motion by:
 - Telling the subject to hold his/her breath
 - Respiratory gating: Take repeated scans at the same point in the subject's respiratory cycle
- Increasing scanning speed
 - Taking many fast scans, aligning them, and averaging helps to average out the noise while compensating for motion

MR Artifacts: Metal

 Pieces of metal can distort the magnetic field and cause all sorts of problems

Metal Implants

Effect of Small Letter "c" Tattoo on Upper Arm wwwrad.pulmonary.ubc.ca/stpaulsstuff/MRartifacts.html

MR Artifacts: Geometric Distortion

• We start out assuming that our magnet generates a magnetic field (B0) that is constant (same direction and magnitude) throughout the 3D space.

What it looks like without geometric distortion

What it looks like with geometric distortion

E.F. Jackso

ADNI Phantom

Distortion Correction

SPGR Phased Array

Baseline

Slide courtesy Nick Fox, UCL

SPGR

Phased Array

Repeat

Slide courtesy Nick Fox, UCL

MR Artifacts: Intensity distortion

 Magnetic field irregularities in the gradient coil (B1) can also cause intensity distortions in parts of the image

What the image looks like with intensity distortion

What it looks like without it

E.F. Jackson

Correcting intensity distortion

- Assume that all voxels that belong to the same tissue type have the same intensity
- Assume h() is the function that defines image inhomogeneities
 - IF we know the tissue type of all voxels, we can estimate what h() is
 - All the voxels of type T should have the same intensity I₁
 - > If [x,y,z] is of tissue type T, $h([x,y,z])=I'([x,y,z])-I_{T}$
 - h is usually assumed to be a smoothly-varying, lowdimensional function, so these initial guesses at h([x,y,z]) can be fit to a parametric model

Correcting intensity distortion

• One common solution:

- Estimate the tissue types by simple thresholding of the image intensity
- Use those tissue types to estimate h
- Update the image intensity based on the current h
- Repeat

Image

Intensity correction h()

Tissue types

Correcting intensity distortions: examples

Distorted image

Intensity correction: h()

Intensity

distortion: h()

Evan Elatah

Correcting intensity distortions: examples

Intensity histogram before correction:

Intensity histogram after correction:

The intensity histogram should have sharp peaks corresponding to the different tissue types

Evan Fletcher

Image Analysis

Manual ROIs
Segmentation
Alignment
SPM
Free-Surfer

Regions of Interest (ROI)

Manual

Anatomically defined, usually by expert
Detailed discussion of boundaries
Documented procedure with high precision
Hippocampus

Differences of anatomical landmarks among protocols after semantic harmonization.

AC-PC line [H,K,M,Pa,Pr]							
		•					
Where crus/crura of fornix/ces is/are visible in full profile [C,dTM,J,K,L,S,W]	Where gray matter is visible inferomedially to the trigone of the lateral ventricle [H,M,Pa,Pr]						
Lower border of alveus/fimbria [B,H,K,Pa,S]							
Separation subiculum/enthorinal cortex							
Oblique line with same inclination of parahippocampal WM, connecting the inferior part of the subiculum to the quadrigeminal cistern [K,L,M,Pr,W]	Horizontal line from the highest medial point of the parahippocampal WM to the cistern [B,dTM,H]	Line outlining the contour of white matter of parahippocampal gyrus [J,Pa,S]					
	AC-PC line [H,K,M,Pa,Pr] Where crus/crura of fornix/ces is/are visible in full profile [C,dTM,J,K,L,S,W] norinal cortex Oblique line with same inclination of parahippocampal WM, connecting the inferior part of the subiculum to the quadrigeminal cistern [K,L,M,Pr,W]	AC-PC line [H,K,M,Pa,Pr] Where crus/crura of fornix/ces is/are visible in full profile [C,dTM,J,K,L,S,W] Upper border of alveus/fimbria [C,dTM,J,L,M,Pr,W] Morinal cortex Oblique line with same inclination of parahippocampal WM, connecting the inferior part of the subiculum to the quadrigeminal cistern [K,L,M,Pr,W]					

[B] Bartzokis et al., 1998, [C] Convit et al., 1997, [dTM] deToledo-Morrell et al., 2004, [H] Haller et al., 1997, [J] Jack et al., 1994,
[K] Killiany et al., 1993, [L] Lehericy et al., 1994, [M] Malykhin et al., 2007, [Pa] Pantel et al., 2000, [Pr] Pruessner et al., 2000,
[S] Soininen et al., 1994, [W] Watson et al., 1992.

BACKGROUND The effect of segmentation protocols on hippocampal volume

Ref.	Med border	Lat border	Inf border	Norm. hippo vol (cm ³)	
			Inal subjeuler complex &	Left	Right
Watson et al.	Mesial edge of temporal lobe	Temp horn of lat ventr	uncal cleft w/ border separating subicular complex from parahippo	4.903	5.264
Zipursk y et al.	Regional outline at choroidal fissure	Not mentioned	The interface of hippocampal tissue and parahippocampal gyrus white matter	1.990	2.070

Geuze et al., Mol Psychiatry 2005;10:147-59

3D RENDERING & COMPUTATIONS

Rendering by Simon Duchesne and Nicolas Robitaille Université Laval and Centre de Recherche Université Laval – Robert Giffard Québec City, Canada

Preliminary ICC values by Segmentation Unit

	Intra-rater
MinHB	0.992
Alve us/fimbria	0.863
MinHB+Alveus/fimbria	0.993
Subiculum	
Oblique line	0.964
Morphology	0.981
Horizontal line	0.980
Tail	
Crus/crura	0.998
Most caudal	0.988

A few words about precision

Reliability of measurement
Intra-rater
Inter-rater
Inter-class correlation
Between measure variance
Within group variance

Another word about precision

More words about precision

ROIa and ROIb have the same area, but are measuring different Things!

Real measure of precision is overlap

Measurements in prototypical control and AD

		Control	AD	% diff from CTR
	MinHB	1888 (65%)	1126 (56%)	-40%
A BAR	Alveus/fimbria	249 (9%)	236 (12%)	-5%
	Subiculum	355 (12%)	261 (13%)	-26%
	Oblique line	199 (7%)	231 (12%)	+16%
	Morphology	335 (11%)	258 (13%)	-23%
	Horizontal line	355 (12%)	261 (13%)	-26%
1	Tail	430 (15%)	373 (19%)	-13%
	Crus/crura	122 (4%)	145 (7%)	+19%
	Most caudal	308 (11%)	228 (11%)	-26%
	MaxHV	2922	1997	-32%

Segmentation

- Reliable determination of voxels associated with distinct tissue types
 - Gray matter
 - White matter
 - ♦CSF

+/- White matter hyperintensities

Expectation Maximization

- Image consists of an array of y intensities
- Each voxel (y_i) has a single intensity
- Segmented image is an array of labels x drawn from a small set of labels k.
- Given a conditional probability density, p we seek optimal labeling x* such that:
 *x** = arg max_x p(xly)

Bayesian Theory

x* = arg max_x p(ylx) p(x)
Where p(ylx) is the measurement model (pixel intensity distribution)
p(x)= priors

Local

>Markov-random fields

Steps in Segmentation

Model to estimate initial tissue distributions Initial segmentation based on assignment Results of iterations

Segmentation based on MRF Adaptation

Assumptions

 Voxel intensity (the most common type of image segmentation) reflects differences in tissue classes

 The underlying distribution of each tissue type has a known mean and standard deviation

 The distribution of intensities about the mean is assumed to be gaussian

WMH Detection from MRI Bayesian Inference Model

Use two key sources of information to determine whether there is a white matter hyperintensity at each voxel:

Prior knowledge

Do WMHs tend to occur at this voxel in general?

The image signal Does it look like a WMH on PD, T1, and T2 MRI?

Combine these two sources of information in a Bayesian inference framework.

Image Alignment

Fundamental to image processing
Places two images in common location

Target
To each other

Look at similar areas across multiple images
Look at differences in same individual over time

Principles of image alignment

- Given 2 images I₁ and I₂ as volumetric images
 I ([x y z]))
- Estimate a geometric transformation of I₁ that aligns it to I₂: g([x y z]) -> [x' y' z']
- g should align corresponding parts of the objects shown in I₁ and I₂ to each other:
 - If I₁ and I₂ are images of the same instance of the same object,
 I₁([x y]) and I₂(g([x y])) should be pixels covering the same part of the same object
 - If I₁ and I₂ are images of the same *type of* object, I₁([x y]) and I₂(g([x y])) should be pixels covering the same general part of the object shown

Components of image registration

- **Transformation model:** The functional form of g(), which is parameterized by a vector of parameters θ .
- Metric: A function M(I ([x y z]) , I (g([x y z]))) that is low when g aligns I and I well and high when it does not $2^{(x y z)}$
- Interpolation scheme: Given an image I where I ([x y z]) is only defined at integer [x y z], the interpolation scheme assigns intensities to I at floating point [x y z]
- **Optimizer:** Iteratively finds θ that minimize M
 - Initial conditions: A starting guess at θ
 - Stopping conditions: Criterion for determining when to stop trying to find better values of θ

Interpolation example:

Out transformation gives us this alignment between I and I , and to measure goodness-of-fit we need to evaluate I (black dots) at the in-between-pixel positions (clear dots) where I 's pixels get transformed to 2^{2}

Transformation models

- Rigid transformations rotate and translate I to align it with I
- Similarity transformations add isotropically scaling to this (e.g., a*x,b*y,c*z)
- Affine transformations add anisotropic scaling and shearing

Above assume a single transformation function applied to all voxels in the image

- Deformable transformations
 - Local tranformation in voxel locations based on regional comparisons (e.g. control points) allowing for different shape

Transformation models

$g_{\phi}(x,y,z) = T * [x y z]$

Affine model: T is a 4x4 matrix of constants 12 parameters: 3 rotations, translations, scalings, and shears Global transformation: each pixel is moved the same amount No local expansions or contractions

$$g_{\phi}(x,y,z) = \sum_{p=0}^{K} \sum_{q=0}^{K} \sum_{r=0}^{K} [a_{pqr1}, a_{pqr2}, a_{pqr3}] \cdot x^{p} y^{q} z^{r}$$

Polynomial model: the a coefficients are the parameters The number of parameters depends on your choice of K: the degree of the highest polynomial in your model More polynomials means a higher degree of possible deformation

Nonrigid transformations

- Semi-deformable models allow the image to deform in more constrained, smooth ways
- **Fully-deformable models** allow each pixel to move around arbitrarily, in an unconstrained way
- Because they constrain the deformation less, fully-deformable methods have the potential to more accurately align the images together, even when one is a highly deformed version of the other
- But higher degrees of deformation usually imply more parameters that need to be estimated and the possibility of non-biological transformations

Transformation models

$$g_{\phi}(x,y,z) = [x,y,z] + \sum_{p=0}^{K} [a_{p1},a_{p2},a_{p3}] \cdot d_p(x,y,z)$$

Discrete cosine transform model: The coefficients (a) are the parameters; d () is the pth DCT basis function p p p The number of parameters depends on the number of DCT basis functions you include Higher-order DCT basis functions corresponds to higher-frequency sinusoids: therefore higher degrees of deformation

$$g_{\phi}(x,y,z) = [x,y,z] + [\delta x, \delta y, \delta z]$$

Fully-deformable model:

Each voxel is translated by its own individual displacement vector [dx,dy,dz] The number of parameters is high-- 3 per pixel! The degree of deformation is arbitrary

The metric

- The relationship between intensities in I and intensities in I can be complex, even if they are images of the same object 2^2
 - Consider two images of the same face in different lighting: parts of the face that are bright in one image may look dark in another
 - Two MR images of the same brain may look entirely different if the scanner or scanning parameters differ
- Therefore we use geometric and intensity transformations to model the relationship between I₁ and I₂ : I₁([x y z]) = h(I₂(g([x y z])))
- Different metrics make different assumptions about the relationship

2 MR scans of the same brain with different scan parameters

CMU PIE Database

Linear intensity transformations

- Let's say that instead of assuming the two images have identical intensities, you assume that there is a linear relationship between them: h(x) = m*x+b
- The intensity differences between the two images will be high even if they are aligned perfectly
- Two Common Approaches:
 - Try to rectify the images to remove m and b: for example, set the means and variances of the images to the same constant values: I₁ -> (I₁mean(I₁)) / variance(I₁)
 - Not possible if Image A and Image B have different Tissue contrasts
 - Use a metric that rewards I ([x y z]) and I (g([x y z])) if there is a consistent linear relationship between intensities in I ([x y z]) and in I (g([x y z]))

Linear intensity transformations

• Normalized correlation rewards the two images for having a consistent linear relationship in intensities:

$$\frac{\sum_{x,y,z} I_1(x,y,z) * I_2(g(x,y,z))}{\sqrt{\sum_{x,y,z} I_1(x,y,z) * I_1(x,y,z) + \sum_{x,y,z} I_2(g(x,y,z)) * I_2(g(x,y,z))}}$$

Mutual information

- Mutual information is a way of rewarding images when they have an intensity relationship that is consistent in any way-- regardless of what that relationship is (linear, non-linear, etc.)
- Very simple requirement: If h() transforms intensity x to intensity y for one pixel, it should transform all pixels of intensity x to intensity y
- In other words, the distribution of h(x), given x, should be highly peaked around y
- Note that this says nothing about the functional form of h()-- whether it is linear, quadratic, etc. Just that it should be consistent, transforming all of the x pixels to y no matter where they are in the image

Ideal case for MI: A tightly-clustered joint histogram of I and I 2

Each intensity level in I gets mapped to a small number of intensities in I 2

 $I_2(g([x y z]))$

Mutual information

- The idea that h should be as one-to-one as possible is formalized by looking at the joint distribution of I and I intensities -- $P_{AB}(a,b)$ -- and the marginal distributions of intensities in I and I : $P_{AB}(a)$ and $P_{B}(b)$
- The entropy of these distributions is H(A,B), H(A), and H(B)

$$I(A,B) = \sum_{a} \sum_{b} P_{AB}(a,b) \log \frac{P_{AB}(a,b)}{P_{A}(a)P_{B}(b)}$$

I ([x y z]) intensities

 $I_2(g([x y z]))$ intensities

Example of Linear Alignment

Brain Boundary Shift Integral

Non-linear Alignment

Starting Subject Brain

Target Brain to Warp onto

The Method in Action: Left hand image starts with subject, right with unwarped grid

Initial large-scale warps

Further warping including out-of-slice warps

The Method in Action

The Method in Action

The Method in Action

Now Brains are in a Common Space

Subject Brain After Transformation

Target Brain

Linear v Non-linear Alignment

Automatic ROI

Assisted ROI SNT Hippocampus

Tensor Morphometry

SPM

Affine Alignment to template
Discreet cosign model
Image segmentation based on template and EM
Smoothing kernel to create tissue "density"

SPM Preprocessing

Subject A

Subject B

Gaussian Convolution

Black is Tissue A on background of Tissue B

SPM Interpretation

ADNI AD vs Normal SPM

 $SPM{T_{55}}$

Voxel Based Regression on Age

Gray Matter Density

FA

Free-Surfer

Skull stripping based on deformation template

White Matter, Pial Surface Detection

FreeSurfer **Cortical Thickness**

change

Inflated Surface

3

World Geometry

Parcellation

ADNI MRI

• Aims:

Ease of implementation
Standard sequences
Short sequence times
Reliability
Stable products
Quality control
Phantom
ADNI MRI Methods

 Sequence selection Standard prescan and scouting procedure recommended by the manufacturer Sagittal 3D MP-RAGE Sagittal 3D MP-RAGE repeat Sagittal B1-calibration scan (phased array) Sagittal B1-calibration scan (body coil) Axial proton density T2 dual contrast FSE/TSE • ADNI Phantom

Available MRI Systems

General Electric (GE) Healthcare	Philips Medical Systems	Siemens Medical Solutions
GE 1.5T	Philips 1.5T	Siemens 1.5T
• <u>9.1M4 BC</u>	<u>Multi-Channel Scan List ASO</u>	<u>Avanto VB11</u>
<u>9.1M4 BC Phantom</u>	• <u>R103 Multi-Channel</u>	<u>Avanto VB13</u>
• <u>11.00M4 BRM 8Ch</u>	• <u>R122 Multi-Channel</u>	<u>Avanto VB15</u>
 <u>11.0M4 BRM 8Ch Phantom</u> 	Quad Head Scan List ASO	<u>Avanto VB15 Phantom</u>
 <u>11.0M4 TwinSpeed BC</u> 	• R103 Quad Head	• <u>Espree VB15</u>
 <u>11.0M4 TwinSpeed BC Phantom</u> 	• <u>R122 Quad Head</u>	 Espree VB15 Phantom
 <u>11.0M4 TwinSpeed 8Ch</u> 		• <u>Sonata VA21 CP</u>
 <u>11.0M4 TwinSpeed 8Ch Phantom</u> 		• <u>Sonata VA25 8Ch</u>
 <u>12.0M3 TwinSpeed 8Ch</u> 		• <u>Sonata VA25 CP</u>
 <u>12.0M3 TwinSpeed 8Ch Phantom</u> 		 Symphony Ultra VA21 CP
 <u>12.0M4 TwinSpeed 8Ch</u> 		<u>Symphony Sprint VA25</u>
 <u>12.0M4 TwinSpeed 8Ch Phantom</u> 		 Symphony VA21 VA25 CP Phantom
 <u>14.0M4 TwinSpeed 8Ch</u> 		<u>Symphony VA30 CP</u>
 <u>14.0M4 TwinSpeed 8Ch Phantom</u> 		
 <u>14.0M4 TwinSpeed BC</u> 		
 <u>14.0M4 TwinSpeed BC Phantom</u> 		
GE 3.0T	Philips 3.0T	Siemens 3.0T
• <u>E2M4 CRM 8Ch</u>	 <u>Multi-Channel Scan List</u> 	• <u>Allegra VA25</u>
 E2M4 CRM 8Ch Phantom 	• <u>R104 Multi-Channel</u>	• <u>Trio VA25 8Ch</u>
• <u>VH3M4 CRM BC</u>	• <u>R122 Multi-Channel</u>	• <u>Trio VB12T</u>
 <u>VH3M4 CRM BC Phantom</u> 		• <u>TrioTim VB13</u>
 <u>G3M4 TwinSpeed 8Ch</u> 		• <u>Trio VB15</u>
 <u>G3M4 TwinSpeed 8Ch Phantom</u> 		<u>Trio VB15 Phantom</u>
 <u>12.0M4 TwinSpeed 8Ch</u> 		
<u>12.0M4 TwinSpeed 8Ch Phantom</u>		
<u>14.0M4 TwinSpeed 8Ch</u> <u>14.0M4 TwinSpeed 8Ch</u>	http://adni.loni.ucla.edu/re	search/protocols/mri-protocols

Examples

3.0 T

1.5 T

Number of MRI Acquisitions

Everyone received 1.5 T MRI and 50% received an additional 3T for comparison

Analysis Groups UCSF—Norbert Schuff SNT hippocampus ♦ Freesurfer • UCLA—Paul Thompson Tensor morphometry UCD—DeCarli/Carmichael White matter disease/infarcts • UCSD—Anders Dale Modified Freesurfer Our College of London—Nick Fox ◆BBSI

Summary Results

Measures of Change in MCI: ADAScog13 vs Hippocampal Volume

ADNI, unpublished data.

Mean <u>+</u> (SD) of ADNI Variables

	Annualized mean change by diagnosis		
Variable name	NC	MCI	AD
$CSF A\beta_{42}$	-0.94 (18)	-1.4 (17)	-0.1 (14)
CSF Tau	3.45 (13)	2.34 (21)	1.24 (24)
PIB	0.098 (0.18)	-0.008(0.18)	-0.004(0.25)
FDG-PET: SumZ2PNS	-177 (1532)	752 (2950)	2993 (4040)
FDG-PET: ROI-avg	-0.006(0.06)	-0.015 (0.064)	-0.055 (0.067)
FDG-PET: DD-fROI	-0.019 (0.037)	-0.047(0.030)	-0.081(0.047)
Hippocampus	-40(84)	-80 (91)	-116 (93)
Ventricles	848 (973)	1551 (1520)	2540 (1861)
ADAS-cog total	-0.54 (3.05)	1.05 (4.40)	4.37 (6.60)
MMSE	0.0095 (1.14)	-0.64(2.5)	-2.4(4.1)
CDR-SB	0.07 (0.33)	0.63 (1.16)	1.62 (2.20)
RAVLT 5-trial total	0.29 (7.8)	-1.37 (6.6)	-3.62 (5.6)

Baseline MRI Measures

FreeSurfer	NC	MCI	AD
Hippocampus	3631 <u>+</u> 440	3240 <u>+</u> 521	2902 <u>+</u> 501
Brain	999417 <u>+</u> 96951	992133 <u>+</u> 10104	942935 <u>+</u> 100330
Ventricles	37994 <u>+</u> 20449	44727 <u>+</u> 21454	49489 <u>+</u> 22971
UCD			
WMH			
Volume (cm ³)	0.745 <u>+</u> 2.27	0.838 <u>+</u> 2.53	1.05 <u>+</u> 1.90
SNT			
hippocampus	3606 <u>+</u> 446	3170 <u>+</u> 533	2802 <u>+</u> 526
ventricles	17934 <u>+</u> 10192	22348 <u>+</u> 12150	25815 <u>+</u> 13417

Longitudinal Change

FreeSurfer	NC	MCI	AD
Hippocampus	-36.4 <u>+</u> 2.0	-65.6 <u>+</u> 2.5	-96.7 <u>+</u> 4.2
Brain	-5580 <u>+</u> 258	-9309 <u>+</u> 346	-13328 <u>+</u> 637
Ventricles	1486 <u>+</u> 99	2935 <u>+</u> 146	4775 <u>+</u> 277
UCD			
WMH Volume	0.028 <u>+</u> 0.048	0.085 <u>+</u> 0.052	0.155 <u>+</u> 0.106
BSI			
VBSI	1.55 <u>+</u> 1.79	3.07 <u>+</u> 3.0	4.87 <u>+</u> 3.4
BBSI	1.55 <u>+</u> 1.79 6.76 <u>+</u> 6.7	3.07 <u>+</u> 3.0 12.27 <u>+</u> 9.4	4.87 <u>+</u> 3.4 16.47 <u>+</u> 9.5
VBSI BBSI	1.55 <u>+</u> 1.79 6.76 <u>+</u> 6.7	3.07 <u>+</u> 3.0 12.27 <u>+</u> 9.4	4.87 <u>+</u> 3.4 16.47 <u>+</u> 9.5
BBSI SNT	1.55 <u>+</u> 1.79 6.76 <u>+</u> 6.7	3.07 <u>+</u> 3.0 12.27 <u>+</u> 9.4	4.87 <u>+</u> 3.4 16.47 <u>+</u> 9.5
VBSI BBSI SNT hippocampus	1.55 <u>+</u> 1.79 6.76 <u>+</u> 6.7 -37.3 <u>+</u> 3.7	3.07 <u>+</u> 3.0 12.27 <u>+</u> 9.4 -72.8 <u>+</u> 3.3	4.87 <u>+</u> 3.4 16.47 <u>+</u> 9.5 -99.7 <u>+</u> 4.9

Hippocampus Cross-Sectional v Longitudinal

Boundary Shift Integral

FreeSurfer Rates of Change

Neurology[®] 2009;73:457-465