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Medical imagesMedical images
The key distinguishingThe key distinguishing

characteristic of medical imagescharacteristic of medical images
is that you get to look at theis that you get to look at the
interior of objectsinterior of objects
Instead of a 2D array of data (likeInstead of a 2D array of data (like

photos)...photos)...
You get a full 3D volume of data: forYou get a full 3D volume of data: for

each (x,y,z) location in space youeach (x,y,z) location in space you
have a measurement of somehave a measurement of some
aspect of the material at (x,y,z)aspect of the material at (x,y,z)

The images are referred to asThe images are referred to as
volumetric images volumetric images or or tomographstomographs



Medical image acquisitionMedical image acquisition
Scientific principles that underlie MRIScientific principles that underlie MRI

and PET:and PET:
If you shoot beams of electromagneticIf you shoot beams of electromagnetic

energy into biological tissue, the amount ofenergy into biological tissue, the amount of
time it takes for the tissue to release thattime it takes for the tissue to release that
energy depends on the type of materialenergy depends on the type of material

If you inject biological tissue with aIf you inject biological tissue with a
radioactive substance, you can tell where theradioactive substance, you can tell where the
substance goes by detecting the radioactivesubstance goes by detecting the radioactive
decaydecay



Magnetic Resonance ImagingMagnetic Resonance Imaging
 Basics:Basics:
 If you If you exciteexcite atoms (beam energy into them) they gradually atoms (beam energy into them) they gradually

relaxrelax (let off the energy over time) (let off the energy over time)
 How quickly they let off the energy depends on theHow quickly they let off the energy depends on the

structure of the atom and the organization of the atomsstructure of the atom and the organization of the atoms
surrounding them: so if you can record how quickly a setsurrounding them: so if you can record how quickly a set
of atoms lets off the energy you beam into it, you canof atoms lets off the energy you beam into it, you can
figure out what material the atoms are infigure out what material the atoms are in



Magnetic Resonance ImagingMagnetic Resonance Imaging
 Generally, they let varying amounts of energy off inGenerally, they let varying amounts of energy off in

all directionsall directions
 So if you beam energy into a bunch of atoms andSo if you beam energy into a bunch of atoms and

set up detectors all around it to detect the energyset up detectors all around it to detect the energy
being let off, the signal going into the detectorsbeing let off, the signal going into the detectors
will be somewhat randomwill be somewhat random



Magnetic resonance imaging (MRI)Magnetic resonance imaging (MRI)
 However, some atomsHowever, some atoms

have asymmetries: atomshave asymmetries: atoms
like like 11H, H, 3131P, P, 1313C, C, 1919F haveF have
a non-zero nuclear spina non-zero nuclear spin

 Valence electrons spinValence electrons spin
around the nucleus in aaround the nucleus in a
particular orbit and induceparticular orbit and induce
a tiny magnetic field alonga tiny magnetic field along
the atomic polethe atomic pole

 Normally, these poles areNormally, these poles are
oriented at arbitraryoriented at arbitrary
orientationsorientations

http://www.simplyphysics.com



Magnetic resonance imaging (MRI)Magnetic resonance imaging (MRI)
 But if you apply an external magnetic field (B0), the atomicBut if you apply an external magnetic field (B0), the atomic

poles tend to line up along the direction of that field.  Theypoles tend to line up along the direction of that field.  They
spin at some angle with respect to the B0 direction; thespin at some angle with respect to the B0 direction; the
stronger B0 is, the more they align with B0stronger B0 is, the more they align with B0



Magnetic resonance imaging (MRI)Magnetic resonance imaging (MRI)
 The radio-frequency (RF) pulseThe radio-frequency (RF) pulse

  Perturbs the spin and Perturbs the spin and
 They gradually release their energy in predictable directions whileThey gradually release their energy in predictable directions while

reorienting themselves toward B0reorienting themselves toward B0
 Energy is released orthogonal to B0Energy is released orthogonal to B0
 By having a detector orthogonal to B0, we can record how quickly the pre-By having a detector orthogonal to B0, we can record how quickly the pre-

cessing atoms release their energy, and thus back out the materialcessing atoms release their energy, and thus back out the material
properties of the atomsproperties of the atoms

Jolinda Smith

Original
orientation

Flipped
orientation



T1 and T2T1 and T2

T1-exponential recovery of Mz in time
T2-exponentia decay of signal



Tissue Specific T1/T2Tissue Specific T1/T2



Magnetic resonance imagingMagnetic resonance imaging
 A receiver picks up this emitted energy after the RF pulse isA receiver picks up this emitted energy after the RF pulse is

administered.administered.
 Based on the time course of energy captured by the receiver, we backBased on the time course of energy captured by the receiver, we back

out material properties at each spatial location that is consistent without material properties at each spatial location that is consistent with
all the receiver data.all the receiver data.



Positron Emission TomographyPositron Emission Tomography
 LetLetʼ̓s say you have as say you have a

radioactive substance (aradioactive substance (a
radioisotope) at some pointradioisotope) at some point
in spacein space

 ““RadioactiveRadioactive”” means it means it
decays by emitting high-decays by emitting high-
energy charged particlesenergy charged particles

 When it emits a positively-When it emits a positively-
charged particle-- a positron--charged particle-- a positron--
it smashes into an electron,it smashes into an electron,
which annihilates both ofwhich annihilates both of
themthem

 The by-product of thisThe by-product of this
reaction is a pair of high-reaction is a pair of high-
energy photons (gammaenergy photons (gamma
rays) that shoot off 180rays) that shoot off 180
degrees apart from each otherdegrees apart from each other



Positron Emission TomographyPositron Emission Tomography
 If we can detect two emittedIf we can detect two emitted

gamma rays that are 180gamma rays that are 180
degrees apart from each otherdegrees apart from each other
and hit the detectors at theand hit the detectors at the
same time, we know that asame time, we know that a
positron must have beenpositron must have been
emitted somewhere along theemitted somewhere along the
line between them: theline between them: the line of line of
responseresponse

 The radioisotope emits many,The radioisotope emits many,
many positrons that causemany positrons that cause
gamma rays to shoot off in allgamma rays to shoot off in all
directionsdirections

 Intersect all the lines ofIntersect all the lines of
response to determine where inresponse to determine where in
space the radioisotope isspace the radioisotope is

 In this way the gamma rays actIn this way the gamma rays act
as a sort of as a sort of ““homing beaconhoming beacon””
for the radioisotopefor the radioisotope

William Moses



Positron emission tomographyPositron emission tomography
Specific UsesSpecific Uses
Attach radioisotopes to molecules that areAttach radioisotopes to molecules that are

used in normal metabolism (e.g. F18)used in normal metabolism (e.g. F18)
Radiation is emitted during metabolismRadiation is emitted during metabolism

Attach radioisotopes to drugs acting atAttach radioisotopes to drugs acting at
specific receptorsspecific receptors
Radiation is emitted during interaction withRadiation is emitted during interaction with

receptorreceptor
Attach radioisotopes to molecules thatAttach radioisotopes to molecules that

interact with specific protein confirmationsinteract with specific protein confirmations
(e.g. PiB)(e.g. PiB)
Radiation is emitted when molecule interactsRadiation is emitted when molecule interacts

with proteinwith protein



Key problem with PETKey problem with PET

Each radioisotope has a half-life: itEach radioisotope has a half-life: it
only spits out positrons for a shortonly spits out positrons for a short
period of timeperiod of time

Fluorine has a half life of 2 hoursFluorine has a half life of 2 hours
Heavy oxygen is more like 20 minutesHeavy oxygen is more like 20 minutes
Meaning you better be VERY close toMeaning you better be VERY close to

a cyclotron to use 15O.a cyclotron to use 15O.



SummarySummary
MRI examines how magnetic-field-MRI examines how magnetic-field-

aligned materials give off RF energyaligned materials give off RF energy
High spatial resolutionHigh spatial resolution
High tissue contract that can be variedHigh tissue contract that can be varied

PET attaches radioactive isotopes toPET attaches radioactive isotopes to
molecules used in metabolism,molecules used in metabolism,
receptors and even protein-proteinreceptors and even protein-protein
interactioninteraction



Issues of Image QualityIssues of Image Quality



Signal to Noise of VariousSignal to Noise of Various
SystemsSystems



Effect of SNR onEffect of SNR on
SegmentationSegmentation



ArtifactsArtifacts
MovementMovement
Foreign bodiesForeign bodies
Field InhomogeneityField Inhomogeneity

B0:Geometric DistortionB0:Geometric Distortion
B1: Intensity inhomogeneityB1: Intensity inhomogeneity



MR Artifacts: MotionMR Artifacts: Motion

 MR image reconstructionMR image reconstruction
methods assume themethods assume the
patient is sitting still.  Herepatient is sitting still.  Here
is an abdominal MRis an abdominal MR
image taken while theimage taken while the
subject is breathingsubject is breathing

 Motion is a problem for allMotion is a problem for all
imaging modalities; theyimaging modalities; they
all assume the subject isall assume the subject is
sitting perfectly stillsitting perfectly still

Raw image Image after correction
 for motion

E.F. Jackson



MR Artifacts: MotionMR Artifacts: Motion
 Correct for respiratory motion by:Correct for respiratory motion by:
 Telling the subject to hold his/her breathTelling the subject to hold his/her breath
 Respiratory gating: Take repeated scans at the same point inRespiratory gating: Take repeated scans at the same point in

the subjectthe subjectʼ̓s respiratory cycles respiratory cycle
 Increasing scanning speedIncreasing scanning speed
 Taking many fast scans, aligning them, and averaging helps toTaking many fast scans, aligning them, and averaging helps to

average out the noise while compensating for motionaverage out the noise while compensating for motion



MR Artifacts: MetalMR Artifacts: Metal
 Pieces of metal can distort the magnetic field and cause allPieces of metal can distort the magnetic field and cause all

sorts of problemssorts of problems

wwwrad.pulmonary.ubc.ca/stpaulsstuff/MRartifacts.html



MR Artifacts: Geometric DistortionMR Artifacts: Geometric Distortion
 We start out assuming that our magnet generates a magnetic field (B0) that isWe start out assuming that our magnet generates a magnetic field (B0) that is

constant (same direction and magnitude) throughout the 3D space.constant (same direction and magnitude) throughout the 3D space.

What it looks like
with geometric
distortion

E.F. Jackson

What it looks like without
geometric distortion



ADNI PhantomADNI Phantom



Distortion CorrectionDistortion Correction



Baseline

Phased Array

SPGR

Slide  courtesy Nick Fox, UCL



Repeat

Phased Array

SPGR

Slide  courtesy Nick Fox, UCL



MR Artifacts: Intensity distortionMR Artifacts: Intensity distortion
Magnetic field irregularities in theMagnetic field irregularities in the

gradient coil (B1) can also causegradient coil (B1) can also cause
intensity distortions in parts of theintensity distortions in parts of the
imageimage

What it looks like without itWhat the image looks like with
intensity distortion

E.F. Jackson



Correcting intensity distortionCorrecting intensity distortion
 Assume that all voxels that belong to the same

tissue type have the same intensity
 Assume h() is the function that defines image

inhomogeneities
 IF we know the tissue type of all voxels,  we can estimate

what h() is
 All the voxels of type T should have the same intensity I

T
 If [x,y,z] is of tissue type T, h([x,y,z])=Iʼ([x,y,z])-I

T
 h is usually assumed to be a smoothly-varying, low-

dimensional function, so these initial guesses at h([x,y,z])
can be fit to a parametric model



Correcting intensity distortionCorrecting intensity distortion
 One common solution:One common solution:

 Estimate the tissue types by simple thresholding of the image intensityEstimate the tissue types by simple thresholding of the image intensity
 Use those tissue types to estimate hUse those tissue types to estimate h
 Update the image intensity based on the current hUpdate the image intensity based on the current h
 RepeatRepeat

Intensity correction h()

Tissue typesImage

Tissue types

Tissue CTissue BTissue A

Evan
Fletcher



Correcting intensityCorrecting intensity
distortions: examplesdistortions: examples

Intensity
distortion: h() Distorted image

Intensity
correction:  -
h()

Corrected image

Evan
Fletcher



Correcting intensityCorrecting intensity
distortions: examplesdistortions: examples

Intensity histogram before
correction:

Evan
Fletcher

Intensity histogram after
correction:

The intensity histogram should have sharp
peaks corresponding to the different tissue
types



Image AnalysisImage Analysis

Manual ROIsManual ROIs
SegmentationSegmentation
AlignmentAlignment
SPMSPM
Free-SurferFree-Surfer



Regions of Interest (ROI)Regions of Interest (ROI)

ManualManual
Anatomically defined, usually by expertAnatomically defined, usually by expert
Detailed discussion of boundariesDetailed discussion of boundaries
Documented procedure with high precisionDocumented procedure with high precision



HippocampusHippocampus



Geuze et al., Mol Psychiatry 2005;10:147-59

Ref. Med border Lat
border Inf border

Norm. hippo
vol (cm3)

Left Right

Watson
et al.

Mesial edge
of temporal
lobe

Temp horn
of lat ventr

Incl subicular complex &
uncal cleft w/ border
separating subicular
complex from parahippo
gyrus

4.903 5.264

Zipursk
y et al.

Regional
outline at
choroidal
fissure

Not
mentioned

The interface of
hippocampal tissue and
parahippocampal gyrus
white matter

1.990 2.070

BACKGROUND
The effect of segmentation protocols 

on hippocampal volume



3D RENDERING & COMPUTATIONS

Rendering by
Simon Duchesne and Nicolas Robitaille
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Preliminary ICC values by Segmentation Unit

 

 Intra -rater  
M inHB   0.992  

Alve us /fimbria  0.863  

MinHB+A lveus/f imbria  0.993  

Subiculum   

Oblique line  0.964  

Morphology  0.981  

Horizonta l line  0.980  

Tail   

Crus/crura  0.998  

Most cauda l  0.988  



A few words aboutA few words about
precisionprecision

Reliability of measurementReliability of measurement
Intra-raterIntra-rater
Inter-raterInter-rater

 Inter-class correlationInter-class correlation
Between measure varianceBetween measure variance
    Within group variance    Within group variance



Another word aboutAnother word about
precisionprecision

Image resolution



More words aboutMore words about
precisionprecision

ROIa and ROIb have the same area, but are measuring different
Things!

Real measure of precision is overlap



 

 Control AD % diff 
from                   
CTR 

MinHB  1888 (65%) 1126 (56%) -40% 

Alveus/fimbria 249 (9%) 236 (12%) -5% 

Subiculum 355 (12%) 261 (13%) -26% 

Oblique line 199 (7%) 231 (12%) +16% 

Morphology  335 (11%) 258 (13%)  -23% 

Horizontal line 355 (12%) 261 (13%) -26% 

Tail 430 (15%) 373 (19%) -13% 

Crus/crura 122 (4%) 145 (7%) +19% 

Most caudal 308 (11%) 228 (11%) -26% 

MaxHV 2922 1997 -32% 

Measurements 
in prototypical control and AD



SegmentationSegmentation
Reliable determination of voxelsReliable determination of voxels

associated with distinct tissueassociated with distinct tissue
typestypes
Gray matterGray matter
White matterWhite matter
CSFCSF
+/- White matter+/- White matter
 hyperintensities hyperintensities



Expectation MaximizationExpectation Maximization

 Image consists of an array of yImage consists of an array of y
intensitiesintensities

Each voxel (yEach voxel (yii) has a single intensity) has a single intensity
Segmented image is an array of labelsSegmented image is an array of labels

x drawn from a small set of labels k.x drawn from a small set of labels k.
Given a conditional probability density,Given a conditional probability density,

p we seek optimal labeling x* such that:p we seek optimal labeling x* such that:
xx* = arg max* = arg maxxx  p(x|y)p(x|y)



Bayesian TheoryBayesian Theory

xx* = arg max* = arg maxx x p(y|x) p(x)p(y|x) p(x)
Where Where p(y|x) p(y|x) is the measurementis the measurement

model (pixel intensity distribution)model (pixel intensity distribution)
p(x)= p(x)= priorspriors
LocalLocal

Markov-random fieldsMarkov-random fields
Tissue CTissue BTissue A



Steps in SegmentationSteps in Segmentation

Model to estimate initial tissue distributions
Initial segmentation based on assignment
Results of iterations



Segmentation based onSegmentation based on
MRF AdaptationMRF Adaptation



AssumptionsAssumptions

Voxel intensity (the most common typeVoxel intensity (the most common type
of image segmentation) reflectsof image segmentation) reflects
differences in tissue classesdifferences in tissue classes

The underlying distribution of eachThe underlying distribution of each
tissue type has a known mean andtissue type has a known mean and
standard deviationstandard deviation

The distribution of intensities about theThe distribution of intensities about the
mean is assumed to be gaussianmean is assumed to be gaussian



WMH Detection from MRIWMH Detection from MRI
Bayesian Inference ModelBayesian Inference Model

Use two key sources of information to determine whetherUse two key sources of information to determine whether
there is a white matter hyperintensity at each voxel:there is a white matter hyperintensity at each voxel:

Prior knowledge

Do WMHs tend to
occur at this voxel in
general?

The image signal

Does it look like a
WMH on PD, T1,
and T2 MRI?

? ?

Combine these two sources of information in a Bayesian inference framework.



Image AlignmentImage Alignment

Fundamental to image processingFundamental to image processing
Places two images in common locationPlaces two images in common location

TargetTarget
To each otherTo each other

Look at similar areas across multipleLook at similar areas across multiple
imagesimages
Look at differences in same individualLook at differences in same individual

over timeover time



Principles of image alignmentPrinciples of image alignment
 Given 2 images Given 2 images II

11
 and  and II

22
 as volumetric images as volumetric images

  I I ([x y z]))([x y z]))
 Estimate a geometric transformation of Estimate a geometric transformation of II

11
 that  that alignsaligns it it

to to II
22
: : gg([x y z]) -> [x([x y z]) -> [x ʼ̓ y yʼ̓ z zʼ̓]]

 gg should align corresponding parts of the objects should align corresponding parts of the objects
shown in shown in II

11
 and  and II

22
 to each other: to each other:

 If If II
11
 and  and II

22
 are images of the same instance of the same object, are images of the same instance of the same object,

II
11
([x y]) and ([x y]) and II

22
((gg([x y])) should be pixels covering the same part of([x y])) should be pixels covering the same part of

the same objectthe same object

 If If II
11
 and  and II

22
 are images of the same  are images of the same type oftype of object,  object, II

11
([x y]) and([x y]) and

II
22
((gg([x y])) should be pixels covering the same general part of the([x y])) should be pixels covering the same general part of the

object shownobject shown



Components of image registrationComponents of image registration
 Transformation model:Transformation model: The functional form of  The functional form of gg(), which is parameterized by a(), which is parameterized by a

vector of parameters vector of parameters θθ..
 Metric: Metric: A function M( A function M( II

11
([x y z]) , ([x y z]) , II

22
((gg([x y z])) ) that is low when g aligns ([x y z])) ) that is low when g aligns II

11
 and  and II

22well and high when it does notwell and high when it does not
 Interpolation scheme: Interpolation scheme: Given an image Given an image II

11
 where  where II

11
([x y z]) is only defined at([x y z]) is only defined at

integer [x y z], the interpolation scheme assigns intensities to integer [x y z], the interpolation scheme assigns intensities to II
11

 at floating point [x at floating point [x
y z]y z]

 Optimizer: Optimizer: Iteratively finds Iteratively finds θθ that minimize M that minimize M
 Initial conditions:Initial conditions: A starting guess at  A starting guess at θθ
 Stopping conditions: Stopping conditions: Criterion for determining when to stop trying to findCriterion for determining when to stop trying to find

better values of better values of θθ

Interpolation example:
Out transformation gives us this alignment between
I
1
 and I

2
, and to measure goodness-of-fit we need

to evaluate I
1
 (black dots) at the in-between-pixel

positions (clear dots) where I
2
’s pixels get

transformed to



Transformation modelsTransformation models
 Rigid Rigid transformations rotate and translate transformations rotate and translate II

11to align it with to align it with II
22

 SimilaritySimilarity transformations add isotropically transformations add isotropically
scaling to this (e.g., a*x,b*y,c*z)scaling to this (e.g., a*x,b*y,c*z)

 AffineAffine transformations add anisotropic transformations add anisotropic
scaling and shearingscaling and shearing

Above assume a single transformation functionAbove assume a single transformation function
applied to all voxels in the imageapplied to all voxels in the image

 DDeformableeformable transformations transformations
 Local tranformation in voxel locations based onLocal tranformation in voxel locations based on

regional comparisons (e.g. control points)regional comparisons (e.g. control points)
allowing for different shapeallowing for different shape



Transformation modelsTransformation models

g
φ
(x,y,z)=T * [x y z]

Affine model: T is a 4x4 matrix of constants
12 parameters: 3 rotations, translations, scalings, and
shears
Global transformation: each pixel is moved the same
amount
No local expansions or contractions

Polynomial model: the a coefficients are the parameters
The number of parameters depends on your choice of K:
the degree of the highest polynomial in your model
More polynomials means a higher degree of possible
deformation



Nonrigid transformationsNonrigid transformations
 Semi-deformable modelsSemi-deformable models allow the image to deform in more constrained, smooth allow the image to deform in more constrained, smooth

waysways
 Fully-deformable modelsFully-deformable models allow each pixel to move around arbitrarily, in an allow each pixel to move around arbitrarily, in an

unconstrained wayunconstrained way
 Because they constrain the deformation less, fully-deformable methods have theBecause they constrain the deformation less, fully-deformable methods have the

potential to more accurately align the images together, even when one is a highlypotential to more accurately align the images together, even when one is a highly
deformed version of the otherdeformed version of the other

 But higher degrees of deformation usually imply more parameters that need to beBut higher degrees of deformation usually imply more parameters that need to be
estimated and the possibility of non-biological  transformationsestimated and the possibility of non-biological  transformations

Fully-deformableSemi-deformableAffine



Discrete cosine transform model:
The coefficients (a

p
) are the parameters; d

p
() is the pth DCT

basis function
The number of parameters depends on the number of DCT
basis functions you include
Higher-order DCT basis functions corresponds to higher-
frequency sinusoids: therefore higher degrees of deformation

Fully-deformable model:
Each voxel is translated by its own individual displacement
vector [dx,dy,dz]
The number of parameters is high-- 3 per pixel!
The degree of deformation is arbitrary

Transformation models



The metricThe metric
 The relationship between intensities in The relationship between intensities in II

11
 and intensities in  and intensities in II

22
 can be can be

complex, even if they are images of the same objectcomplex, even if they are images of the same object

 Consider two images of the same face in different lighting: parts of theConsider two images of the same face in different lighting: parts of the
face that are bright in one image may look dark in anotherface that are bright in one image may look dark in another

 Two MR images of the same brain may look entirely different if theTwo MR images of the same brain may look entirely different if the
scanner or scanning parameters differscanner or scanning parameters differ

 Therefore we use geometric and intensity transformations to model theTherefore we use geometric and intensity transformations to model the
relationship between relationship between II

11
 and  and II

22
 :   :  II

11
([x y z]) = ([x y z]) = h( Ih( I

22
((gg([x y z])) )([x y z])) )

 Different metrics make different assumptions about the relationshipDifferent metrics make different assumptions about the relationship

CMU PIE Database
2 MR scans of the same brain with different scan parameters 



Linear intensity transformationsLinear intensity transformations
 LetLetʼ̓s say that instead of assuming the two imagess say that instead of assuming the two images

have identical intensities, you assume that there is ahave identical intensities, you assume that there is a
linear relationship between them: h(x) = m*x+blinear relationship between them: h(x) = m*x+b

 The intensity differences between the two images willThe intensity differences between the two images will
be high even if they are aligned perfectlybe high even if they are aligned perfectly

 Two Common Approaches:Two Common Approaches:
 Try to rectify the images to remove m and b: forTry to rectify the images to remove m and b: for

example, set the means and variances of theexample, set the means and variances of the
images to the same constant values: images to the same constant values: II

1 1 -> (I-> (I
11
--

mean(Imean(I
11
)) / variance(I)) / variance(I

11
))

 Not possible if Image A and Image B have different TissueNot possible if Image A and Image B have different Tissue
contrastscontrasts

 Use a metric that rewards Use a metric that rewards II
11
([x y z]) and ([x y z]) and II

22
((gg([x y z]))([x y z]))

if there is a consistent linear relationship betweenif there is a consistent linear relationship between
intensities in intensities in II

11
([x y z]) and in ([x y z]) and in II

22
((gg([x y z]))([x y z]))



Linear intensity transformationsLinear intensity transformations
 Normalized correlation rewards the two images forNormalized correlation rewards the two images for

having a consistent linear relationship in intensities:having a consistent linear relationship in intensities:

I
1
([x y z])

I
2
(g([x y z]))

! 

I1(x,y,z)* I2(g(x,y,z))
x,y,z
"

I1(x,y,z)* I1(x,y,z)
x,y,z
" + I2(g(x,y,z))* I2(g(x,y,z))

x,y,z
"



Mutual informationMutual information
 Mutual information is a way of rewarding images when they have an intensityMutual information is a way of rewarding images when they have an intensity

relationship that is consistent in any way-- regardless of what that relationship isrelationship that is consistent in any way-- regardless of what that relationship is
(linear, non-linear, etc.)(linear, non-linear, etc.)

 Very simple requirement: If h() transforms intensity x to intensity y for Very simple requirement: If h() transforms intensity x to intensity y for oneone pixel, it pixel, it
should transform should transform allall pixels of intensity x to intensity y pixels of intensity x to intensity y

 In other words, the distribution of h(x), given x, should be highly peaked around yIn other words, the distribution of h(x), given x, should be highly peaked around y
 Note that this says nothing about the functional form of h()-- whether it is linear,Note that this says nothing about the functional form of h()-- whether it is linear,

quadratic, etc.  Just that it should be consistent, transforming all of the x pixels to yquadratic, etc.  Just that it should be consistent, transforming all of the x pixels to y
no matter where they are in the imageno matter where they are in the image

I
1
([x y z])

I
2
(g([x y z]))

Ideal case for MI: A
tightly-clustered joint
histogram of I

1
 and

I
2

Each intensity level
in I

1
 gets mapped to

a small number of
intensities in I

2



Mutual informationMutual information
 The idea that h should be as one-to-one as possible is formalized by looking at theThe idea that h should be as one-to-one as possible is formalized by looking at the

joint distribution of joint distribution of II
11

 and  and II
22

 intensities -- P intensities -- P
ABAB

(a,b) -- and the marginal distributions(a,b) -- and the marginal distributions

of intensities in of intensities in II
1 1 

and and II
22

 : P : P
AA

(a) and P(a) and P
BB

(b)(b)

 The entropy of these distributions is H(A,B), H(A), and H(B)The entropy of these distributions is H(A,B), H(A), and H(B)

I
1
([x y z])

intensities

I
2
(g([x y z])) intensities

! !=
a b BA

AB
AB bPaP

baPbaPBAI
)()(
),(

log),(),(

)|()(
)|()(

),()()(

ABHBH
BAHAH

BAHBHAH

"=

"=

"+=



Example of Linear AlignmentExample of Linear Alignment



Brain Boundary ShiftBrain Boundary Shift
IntegralIntegral



Non-linear AlignmentNon-linear Alignment
Starting Subject Brain Target Brain to Warp onto



The Method in Action:The Method in Action:
Left hand image starts withLeft hand image starts with

subject, right with unwarped gridsubject, right with unwarped grid



Initial large-scale warpsInitial large-scale warps



Further warping includingFurther warping including
out-of-slice warpsout-of-slice warps



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



The Method in ActionThe Method in Action



Now Brains are in aNow Brains are in a
Common SpaceCommon Space

Subject Brain After Transformation Target Brain



Linear v Non-linear AlignmentLinear v Non-linear Alignment
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Automatic ROIAutomatic ROI



Assisted ROIAssisted ROI
SNT HippocampusSNT Hippocampus



Tensor MorphometryTensor Morphometry



SPMSPM

Affine Alignment to templateAffine Alignment to template
Discreet cosign modelDiscreet cosign model

 Image segmentation based on templateImage segmentation based on template
and EMand EM

Smoothing kernel to create tissueSmoothing kernel to create tissue
““densitydensity””



SPM PreprocessingSPM Preprocessing

Subject A

Subject B



Gaussian ConvolutionGaussian Convolution

Black is Tissue A on background of Tissue B



SPM InterpretationSPM Interpretation



ADNI AD vs Normal SPMADNI AD vs Normal SPM



Voxel Based RegressionVoxel Based Regression
on Ageon Age

Gray Matter Density FA



Free-SurferFree-Surfer

Skull stripping based on deformation template



White Matter, Pial Surface DetectionWhite Matter, Pial Surface Detection



FreeSurferFreeSurfer
CorticalCortical

ThicknessThickness



Inflated SurfaceInflated Surface



World GeometryWorld Geometry



ParcellationParcellation



ADNI MRIADNI MRI

Aims:Aims:
Ease of implementationEase of implementation

Standard sequencesStandard sequences
Short sequence timesShort sequence times

ReliabilityReliability
Stable productsStable products

Quality controlQuality control
PhantomPhantom



ADNI MRI MethodsADNI MRI Methods

Sequence selectionSequence selection
Standard prescan and scouting procedureStandard prescan and scouting procedure

recommended by the manufacturerrecommended by the manufacturer
Sagittal 3D MP-RAGESagittal 3D MP-RAGE
Sagittal 3D MP-RAGE repeatSagittal 3D MP-RAGE repeat
Sagittal Sagittal B1-calibration scan (phased array)B1-calibration scan (phased array)
Sagittal Sagittal B1-calibration scan (body coil)B1-calibration scan (body coil)
Axial proton density Axial proton density T2 dual contrastT2 dual contrast

FSE/TSEFSE/TSE
ADNI PhantomADNI Phantom



General Electric (GE) Healthcare Philips Medical Systems Siemens Medical Solutions
GE 1.5T

• 9.1M4 BC
• 9.1M4 BC Phantom
• 11.00M4 BRM 8Ch
• 11.0M4 BRM 8Ch Phantom
• 11.0M4 TwinSpeed BC
• 11.0M4 TwinSpeed BC Phantom
• 11.0M4 TwinSpeed 8Ch
• 11.0M4 TwinSpeed 8Ch Phantom
• 12.0M3 TwinSpeed 8Ch
• 12.0M3 TwinSpeed 8Ch Phantom
• 12.0M4 TwinSpeed 8Ch
• 12.0M4 TwinSpeed 8Ch Phantom
• 14.0M4 TwinSpeed 8Ch
• 14.0M4 TwinSpeed 8Ch Phantom
• 14.0M4 TwinSpeed BC
• 14.0M4 TwinSpeed BC Phantom

Philips 1.5T
• Multi-Channel Scan List ASO
• R103 Multi-Channel
• R122 Multi-Channel
• Quad Head Scan List ASO
• R103 Quad Head
• R122 Quad Head

Siemens 1.5T
• Avanto VB11
• Avanto VB13
• Avanto VB15
• Avanto VB15 Phantom
• Espree VB15
• Espree VB15 Phantom
• Sonata VA21 CP
• Sonata VA25 8Ch
• Sonata VA25 CP
• Symphony Ultra VA21 CP
• Symphony Sprint VA25
• Symphony VA21 VA25 CP Phantom
• Symphony VA30 CP

GE 3.0T
• E2M4 CRM 8Ch
• E2M4 CRM 8Ch Phantom
• VH3M4 CRM BC
• VH3M4 CRM BC Phantom
• G3M4 TwinSpeed 8Ch
• G3M4 TwinSpeed 8Ch Phantom
• 12.0M4 TwinSpeed 8Ch
• 12.0M4 TwinSpeed 8Ch Phantom
• 14.0M4 TwinSpeed 8Ch
• 14.0M4 TwinSpeed 8Ch Phantom

Philips 3.0T
• Multi-Channel Scan List
• R104 Multi-Channel
• R122 Multi-Channel

Siemens 3.0T
• Allegra VA25
• Trio VA25 8Ch
• Trio VB12T
• TrioTim VB13
• Trio VB15
• Trio VB15 Phantom

Available MRI SystemsAvailable MRI Systems

http://adni.loni.ucla.edu/research/protocols/mri-protocols/



ExamplesExamples

1.5 T 3.0 T



Number of MRINumber of MRI
AcquisitionsAcquisitions

Everyone received 1.5 T MRI and 50% received an
additional 3T for comparison



Analysis GroupsAnalysis Groups
 UCSFUCSF——Norbert SchuffNorbert Schuff

SNT hippocampusSNT hippocampus
FreesurferFreesurfer

 UCLAUCLA——Paul ThompsonPaul Thompson
Tensor morphometryTensor morphometry

 UCDUCD——DeCarli/CarmichaelDeCarli/Carmichael
White matter disease/infarctsWhite matter disease/infarcts

 UCSDUCSD——Anders DaleAnders Dale
Modified FreesurferModified Freesurfer

 University College of LondonUniversity College of London——Nick FoxNick Fox
BBSIBBSI



Summary ResultsSummary Results



Measures of Change in MCI:Measures of Change in MCI:
ADAScog13 vs Hippocampal VolumeADAScog13 vs Hippocampal Volume

ADNI, unpublished data.



Mean Mean ++ (SD) of ADNI (SD) of ADNI
VariablesVariables



Baseline MRI MeasuresBaseline MRI Measures

FreeSurfer NC MCI AD
Hippocampus 3631 + 440 3240 + 521 2902 + 501

Brain 999417 + 96951 992133 + 10104 942935 + 100330
Ventricles 37994 + 20449 44727 + 21454 49489 + 22971

UCD
WMH

Volume (cm3) 0.745 + 2.27 0.838 + 2.53 1.05 + 1.90

SNT
hippocampus 3606 + 446 3170 + 533 2802 + 526

ventricles 17934 + 10192 22348 + 12150 25815 + 13417



Longitudinal ChangeLongitudinal Change
FreeSurfer NC MCI AD

Hippocampus -36.4 + 2.0 -65.6 + 2.5 -96.7 + 4.2
Brain -5580 + 258 -9309 + 346 -13328 + 637

Ventricles 1486 + 99 2935 + 146 4775 + 277

UCD
WMH Volume 0.028 + 0.048 0.085 + 0.052 0.155 + 0.106

BSI
VBSI 1.55 + 1.79 3.07 + 3.0 4.87 + 3.4
BBSI 6.76 + 6.7 12.27 + 9.4 16.47 + 9.5

SNT
hippocampus -37.3 + 3.7 -72.8 + 3.3 -99.7 + 4.9

ventricles 824 + 52 1517 + 73 2524 + 141



Hippocampus Cross-Hippocampus Cross-
Sectional v LongitudinalSectional v Longitudinal



Boundary Shift IntegralBoundary Shift Integral



FreeSurfer Rates of ChangeFreeSurfer Rates of Change


