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Overview

e Introduction to imaging
®lmage Acquisition
®Artifacts
+Quality control

¢ Analyses




Medical images

e The key distinguishing
characteristic of medical images
Is that you get to look at the
interior of objects

e¢Instead of a 2D array of data (like
photos)...

¢You get a full 3D volume of data: for
each (x,y,z) location in space you
have a measurement of some
aspect of the material at (x,y,z)

¢The images are referred to as
volumetric images or tomographs




Medical image acquisition

e Scientific principles that underlie MRI
and PET:

¢If you shoot beams of electromagnetic
energy into biological tissue, the amount of
time it takes for the tissue to release that
energy depends on the type of material

¢lf you inject biological tissue with a
radioactive substance, you can tell where the
substance goes by detecting the radioactive
decay




Magnetic Resonance Imaging

® Basics:

¢ If you excite atoms (beam energy into them) they gradually
relax (let off the energy over time)

¢ How quickly they let off the energy depends on the
structure of the atom and the organization of the atoms
surrounding them: so if you can record how quickly a set
of atoms lets off the energy you beam into it, you can
figure out what material the atoms are in




Magnetic Resonance Imaging

e Generally, they let varying amounts of energy off in
all directions

e So if you beam energy into a bunch of atoms and
set up detectors all around it to detect the energy
being let off, the signal going into the detectors
will be somewhat random




Magnetic resonance imaging (MRI)

® However, some atoms
have as%/mmetries: atoms
like 'H, °'P, °C, "°F have
a non-zero nuclear spin

® Valence electrons spin
around the nucleus in a
particular orbit and induce
a tiny magnetic field along
the atomic pole

® Normally, these poles are
oriented at arbitrary
orientations

http://www.simplyphysics.com




Magnetic resonance imaging (MRI)

e But if you apply an external magnetic field (B0), the atomic
poles tend to line up along the direction of that field. They
spin at some angle with respect to the B0 direction; the
stronger BO is, the more they align with B0




Magnetic resonance imaging (MRI)

® The radio-frequency (RF) pulse

¢ Perturbs the spin and
¢ They gradually release their energy in predictable directions while
reorienting themselves toward B0

® Energy is released orthogonal to BO
® By having a detector orthogonal to B0, we can record how quickly the pre-
cessing atoms release their energy, and thus back out the material

properties of the atoms

receiver
coil

Jolinda Smith
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Tissue Specific T1/T2




Magnetic resonance imaging

® A receiver picks up this emitted energy after the RF pulse is
administered.

e Based on the time course of energy captured by the receiver, we back
out material properties at each spatial location that is consistent with
all the receiver data.




Positron Emission Tomography
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Positron Emission Tomography

If we can detect two emitted
gamma rays that are 180
degrees apart from each other
and hit the detectors at the
same time, we know that a
positron must have been
emitted somewhere along the
line between them: the line of
response

The radioisotope emits many,
many positrons that cause

gamma rays to shoot off in all
directions

Intersect all the lines of
response to determine where in
space the radioisotope is

In this way the gamma rays act
as a sort of “homing beacon”
for the radioisotope

William Moses




Positron emission tomography
e Specific Uses

¢ Attach radioisotopes to molecules that are
used in normal metabolism (e.g. F18)

> Radiation is emitted during metabolism

¢ Attach radioisotopes to drugs acting at
specific receptors

> Radiation Is emitted during interaction with
receptor

¢Attach radioisotopes to molecules that
interact with specific protein confirmations
(e.g. PiB)
> Radiation is emitted when molecule interacts
with protein




Key problem with PET

e Each radioisotope has a half-life: it
only spits out positrons for a short
period of time

e Fluorine has a half life of 2 hours
@ Heavy oxygen is more like 20 minutes

e Meaning you better be VERY close to
a cyclotron to use 150.




Summary

e MRI examines how magnetic-field-
aligned materials give off RF energy

¢High spatial resolution
¢High tissue contract that can be varied

@ PET attaches radioactive isotopes to

molecules used in metabolism,
receptors and even protein-protein
interaction




Issues of Image Quality




Signal to Noise of Various
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Artifacts

® Movement
e Foreign bodies

e Field Inhomogeneity
B0:Geometric Distortion
B1: Intensity inhomogeneity



MR Artifacts: Motion

Image after correction

R g for motion

® MR image reconstruction
methods assume the
patient is sitting still. Here
is an abdominal MR
image taken while the

subject is breathing
Motion is a problem for all
imaging modalities; they
all assume the subject is
sitting perfectly still

E.F. Jacksc




MR Artifacts: Motion

@ Correct for respiratory motion by:
¢ Telling the subject to hold his/her breath

¢ Respiratory gating: Take repeated scans at the same point in
the subject’s respiratory cycle
® Increasing scanning speed

¢ Taking many fast scans, aligning them, and averaging helps to
average out the noise while compensating for motion




MR Artifacts: Metal

® Pieces of metal can distort the magnetic field and cause all
sorts of problems

Effect of Small Letter “c” wwwrad.pulmonary.ubc.ca/stpaulsstuff/MRartifacts. html
Tattoo on Upper Arm




MR Artifacts: Geometric Distortion

® We start out assuming that our magnet generates a magnetic field (B0O) that is
constant (same direction and magnitude) throughout the 3D space.

What it looks like without What it looks like
geometric distortion with geometric
distortion

g
o

E.F. Jacksc




ADNI Phantom




Distortion Correction




SPGR

Phased Array
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Slide courtesy Nick Fox, UCL
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MR Artifacts: Intensity distortion

@ Magnetic field irregularities In the
gradient colil (B1) can also cause
intensity distortions in parts of the
image

What the image looks like with

ntensity distortion What it looks like without it

E.F. Jackson




Correcting intensity distortion

e Assume that all voxels that belong to the same
tissue type have the same intensity

® Assume h() is the function that defines image
inhomogeneities

¢ IF we know the tissue type of all voxels, we can estimate
what h() is

> All the voxels of type T should have the same intensity IT

> If [X,y,z] is of tissue type T, h([x,y,z])=|’([x,y,z])-|T

> his usually assumed to be a smoothly-varying, low-
dimensional function, so these initial guesses at h([x,y,z])
can be fit to a parametric model




Correcting intensity distortion

® One common solution:
Estimate the tissue types by simple thresholding of the image intensity
Use those tissue types to estimate h
Update the image intensity based on the current h
Repeat Tissue types

Tissue types

Intensity correction h()




Correcting intensity
distortions: examples
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Correcting intensity
distortions: examples

Intensity histogram before Intensity histogram after

correction: correction:
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The intensity histogram should have sharp

peaks corresponding to the different tissue
types

Evan
Fletcher
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e Manual ROls
® Segmentation
e Alignment

o SPM

e Free-Surfer




Regions of Interest (ROI)

ERIEL
¢Anatomically defined, usually by expert
¢Detailed discussion of boundaries
¢Documented procedure with high precision




Hippocampus

Differences of anatomical landmarks among protocols after semantic harmonization.

Plane of tracing

Axis of hippocampus
[B.C.dTM.I.L.S.W]

AC-PC line [H.K,M,Pa,Pr]

Most posterior slice

Where inferior and
superior colliculi are
jomtly visualized [B]

Where crus/crura of
fornix/ces 1s/are visible i
full profile
[C.ATM.JK.L.S.W]

Where gray matter is visible
mferomedially to the trigone
of the lateral ventricle
[H.M.Pa.Pr]

Superior border

Lower border of
alveus/fimbria [B.H.K,Pa.S]

Upper border of
alveus/fimbria
[C.ATM.J.LM.Pr.W]

Separation subiculum/enthorinal cortex

vertical line from the CA
to the WM of the
parahippocampal gyrus

[C]

Oblique line with same
inclination of
parahippocampal WM,
connecting the inferior part
of the subiculum to the
quadrigeminal cistern
[K.L.M.Pr,W]

Horizontal line from the
highest medial point of the
parahippocampal WM to the
cistern [B.dTM.H]

Line outlining the
contour of white
matter of
parahippocampal
gyrus [J.Pa.S]

AC= anterior commissure; PC= posterior commissure; CA=cornu Ammonis; WM=white matter.
[B] Bartzokis et al., 1998, [C] Convit et al., 1997, [dTM] deToledo-Morrell et al., 2004, [H] Haller et al., 1997, [J] Jack et al., 1994,
[K] Killiany et al., 1993, [L] Lehericy et al., 1994, [M] Malykhin et al., 2007, [Pa] Pantel et al., 2000, [Pr] Pruessner et al., 2000,

[S] Soininen et al., 1994, [W] Watson et al., 1992.




Watson
et al.

Zipursk
y et al.

BACKGROUND

The effect of segmentation protocols
on hippocampal volume

Norm. hippo
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Med border border Inf border vol (cm?)
Left Right
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Geuze et al., Mol Psychiatry 2005;10:147-59



3D RENDERING & COMPUTATIONS

Rendering by

Simon Duchesne and Nicolas Robitaille
Université Laval and Centre de Recherche
Université Laval — Robert Giffard

Québec City, Canada




Preliminary ICC values by Segmentation Unit

Intra-rater
MinHB 0.992

Alveus/fimbria 0.863
M inHB+A lveus/fimbria 0.993

Subiculum

Oblique line 0.964

Morphology 0.981

Horizontal line 0.980
Tail

Crus/crura 0.998
Most caudal 0.988




A few words about
precision

e Reliability of measurement
¢Intra-rater
¢Inter-rater

® Inter-class correlation

Between measure variance
Within group variance




Another word about
precision
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Image resolution




More words about
precision

ROla and ROIb have the same area, but are measuring different
Things!

Real measure of precision is overlap




Measurements
in prototypical control and AD

Control AD % diff

from
CTR
1126 (56%) -40%

236 (12%) 5%
261 (13%) 26%
231 (12%) +16%
258 (13%) _23%,
261 (13%) 26%

MinHB 1888 (65%)
249 (9%)
355 (12%)
199 (7%)
335 (11%)

355 (12%)

Alveus/fimbria
Subiculum
Oblique line
Morphology

Horizontal line

Tail

Crus/crura

Most caudal

MaxHV

430 (15%)
122 (4%)
308 (11%)
2922

373 (19%)
145 (7%)
228 (11%)
1997

-13%
+19%
-26%
-32%




Segmentation

@ Reliable determination of voxels
associated with distinct tissue

types
¢Gray matter

¢White matter
¢CSF

¢+/- White matter
hyperintensities




Expectation Maximization

e Image consists of an array of y
intensities

e Each voxel (y;) has a single intensity

@ Segmented image is an array of labels
x drawn from a small set of labels k.

e Given a conditional probability density,
p we seek optimal labeling x* such that:

¢ Xx* = arg max, p(xly)




Bayesian Theory

® X* = arg max, p(yIx) p(x)
® Where p(yix) is the measurement
model (pixel intensity distribution)

® p(x)= priors

¢Local :
> Markov-random fields




Steps in Segmentation

Model to estimate initial tissue distributions
Initial segmentation based on assignment
Results of iterations




Segmentation based on
MRF Adaptation




Assumptions

e Voxel intensity (the most common type
of image segmentation) reflects
differences in tissue classes

® The underlying distribution of each
tissue type has a known mean and
standard deviation

e The distribution of intensities about the
mean is assumed to be gaussian




WMH Detection from MRI
Bayesian Inference Model

Use two key sources of information to determine whether
there is a white matter hyperintensity at each voxel:

AT o

e

‘ ;\‘.-
1k §
| &

Prior knowledge The image signal

Do WMHSs tend to S - Does it look like a

occur at this voxel in o ‘ ‘ WMH on PD. T1

Sl & atr> and T2 MRI?
S B

-

Combine these two sources of information in a Bayesian inference framework.




Image Alignment

e Fundamental to image processing

¢Places two images in common location
> Target
> To each other

¢Look at similar areas across multiple
images

¢Look at differences in same individual
over time




Principles of image alignment

e Given 2 images L and I as volumetric images

I([Ixy z])

e Estimate a geometrlc transformation of L that aligns it
tol:g(lxyz])>[xy 2]

g should alignh corresponding parts of the objects
shown in I1 and I2 to each other:

¢ If L and L are images of the same instance of the same object,
Il([x v]) and Iz(g([x v])) should be pixels covering the same part of

the same object

¢ If L and L are images of the same type of object, Il([x y]) and
Iz(g([x v])) should be pixels covering the same general part of the

object shown




Components of image registration

Transformation model: The functional form of g(), which is parameterized by a
vector of parameters 0.

Metric: A function M(1 ([xy z]),I_(g([xy z]))) thatis low when g aligns1 and ]I
well and high when it ddes not 1 2

Interpolation scheme: Given animage I where I ([xy z]) is only defined at
integer [x y z], the interpolation scheme aé&gns mténsmes to I1 at floating point [x
y Z]

Optimizer: lteratively finds 0 that minimize M

+ Initial conditions: A starting guess at 0

& Stopping conditions: Criterion for determining when to stop trying to find
better values of 6

Interpolation example:

Out transformation gives us this alignment between
I andI_, and to measure goodness-of-fit we need
tcl) evalu%te I (black dots) at the in-between-pixel
positions (clelar dots) where 1 ’s pixels get
transformed to 2




Transformation models

¢ Rigid transformations rotate and translate I
to align it with I_ 1

¢ Similarity transformations add isotropically
scaling to this (e.g., a*x,b*y,c*2z)

¢ Affine transformations add anisotropic
scaling and shearing

Above assume a single transformation function
applied to all voxels in the image

¢ Deformable transformations

> Local tranformation in voxel locations based on
regional comparisons (e.g. control points)
allowing for different shape
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Transformation models

g ¢(x,y,Z)=T *[xyz]

Affine model: T is a 4x4 matrix of constants

12 parameters: 3 rotations, translations, scalings, and
shears

Global transformation: each pixel is moved the same
amount

No local expansions or contractions

N N N
“ —° - .
i L L : / "2."3'1 : a]‘i"J? a]l'.'r.\ g -

p=UQ=Ur=u

Polynomial model: the a coefficients are the parameters
The number of parameters depends on your choice of K:
the degree of the highest polynomial in your model

More polynomials means a higher degree of possible
deformation




Nonrigid transformations

Semi-deformable models allow the image to deform in more constrained, smooth

ways

Fully-deformable models allow each pixel to move around arbitrarily, in an

unconstrained way

Because they constrain the deformation less, fully-deformable methods have the
potential to more accurately align the images together, even when one is a highly

deformed version of the other

But higher degrees of deformation usually imply more parameters that need to be
estimated and the possibility of non-biological transformations
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Transformation models
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5\’1}“‘,\'}*}%’{’1}““‘“\ 8 basis function P
Hill mmw"" m'n The number of parameters depends on the number of DCT

1111 : : :
basis functions you include
Higher-order DCT basis functions corresponds to higher-
frequency sinusoids: therefore higher degrees of deformation

NNV 4 g
Wi
’ @M&:ﬂ; '1}’1

lééﬂi‘lﬂnuﬁ[ﬁl i}ﬁ{’} :H‘i' Fully-deformable model:

| “}‘ w’s" Jj‘ﬁ,jf Each voxel is translated by its own individual displacement

.-n vector [dx,dy,dz]
J?if“‘g”%‘f?@t‘\ \ 1 The number of parameters is high-- 3 per pixel!
- HiHrirdrime RUTIABRRI The degree of deformation is arbitrary




e metric

® The relationship between intensities in I1 and intensities in I _ can be
complex, even if they are images of the same object

¢ Consider two images of the same face in different lighting: parts of the
face that are bright in one image may look dark in another

¢ Two MR images of the same brain may look entirely different if the
scanner or scanning parameters differ

® Therefore we use geometric and intensity transformations to model the

relationship between I1 and 12 : Il([x y z]) = h( IZ(g([X y z])))

o Different metrics make different assumptions about the relationship

b ——

A

¥
3
vy Aol
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-

2 MR scans of the same brain with different scan parameters :
CMU PIE Database




Linear intensity transformations

e Let’s say that instead of assuming the two images
have identical intensities, you assume that there is a
linear relationship between them: h(x) = m*x+b

e The intensity differences between the two images will
be high even if they are aligned perfectly

® Two Common Approaches:

¢ Try to rectify the images to remove m and b: for

example, set the means and variances of the
images to the same constant values: L ->(I-
mean(I )) / variance(l )

> Not pOSSIble if Image A and Image B have different Tissue
contrasts

¢ Use a metric that rewards Il([x y z]) and Iz(g([x &4)))
If there is a consistent linear relationship between
intensities In Il([x y z]) and in Iz(g([x "&4)),




Linear intensity transformations

e Normalized correlation rewards the two images for
having a consistent linear relationship in intensities:

Ell(x,y,z)*lz(g(x,y,z))
X,¥,2

D I(x,y.2)* h(x.y,2)+ Y L(8(x,y,2))* L(g(x.y,2))
X, ¥,2 X, ¥,2




Mutual information

Mutual information is a way of rewarding images when they have an intensity
relationship that is consistent in any way-- regardless of what that relationship is
(linear, non-linear, etc.)

Very simple requirement: If h() transforms intensity x to intensity y for one pixel, it
should transform all pixels of intensity x to intensity y

In other words, the distribution of h(x), given x, should be highly peaked around y

Note that this says nothing about the functional form of h()-- whether it is linear,
quadratic, etc. Just that it should be consistent, transforming all of the x pixels to y
no matter where they are in the image

|deal case for MI: A
tightly-clustered joint
histogram ofI1 and
|
2

Each intensity level
in I gets mapped to
a stall number of
intensities in 12

L (e(xy 2))




Mutual information

® The idea that h should be as one-to-one as possible is formalized by looking at the
joint distribution of I and I_ intensities -- P (a,b) -- and the marginal distributions

of intensitiesinI andI_:P (a)and P_(b)
1 2 A B
® The entropy of these distributions is H(A,B), H(A), and H(B)

P,z (a,b)
P,(a)Py(b)

I(A4,B) = 2 2 P, (a,b)log

I ([xyz])
iﬁtensities

Iz(g([x y z])) intensities




Example of Linear Alignment

XY Z:7.73101.41 32.00 Intensity: 0 ' | XY Z: 6.02 129.77 32.00 Intensity: 0 '’/| XY Z: 39.53 18.91 8B0.00 Intensity: 6 '’




Brain Boundary Shift
Integral

‘.‘(:/ y 4 1 20%

Contraction Expansion

Boundary shifted by Aw:
ircg(x) = ihasc(x"'Aw)

Displacement along line
through boundary




Non-linear Alignment

Starting Subject Brain Target Brain to Warp onto




The Method in Action:
Left hand image starts with
subject, right with unwarped grid




Initial large-scale warps

-
s




Further warping including
out-of-slice warps




The Method in Action




The Method in Action




The Method in Action




The Method in Action




The Method in Action




The Method in Action




The Method in Action




The Method in Action




The Method in Action




The Method in Action
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The Method in Action




The Method in Action




The Method in Action




The Method in Action




The Method in Action
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The Method in Action




The Method in Action




The Method in Action




The Method in Action




Now Brains are in a
Common Space

Subject Brain After Transformation Target Brain




Linear v Non-linear Alignment




. Gray
Original Mask

Cubic
Spline
Transform

Template
ROls

\

Regional Volumes

Reverse Transform ROI
to calculate regional gray
volume




Automatic ROI
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Tensor Morphometry

= Local
W tissue growth
+50%
+40% -
+30%
+20%
+10%
+0%
-10%
-20%
-30%
-40%
~50%.
Local
tissue loss

20 Caudate

head

a4 a ¢ il -50 /o

: : . . f l.ocal
o W & S {3 o growth
Displacement ‘ i

(mm)

Displacement
(mm)
40




SPM

e Affine Alighment to template
¢Discreet cosign model

e Image segmentation based on template
and EM

e Smoothing kernel to create tissue
“density”




SPM Preprocessing

Subject A

Subject B




Gaussian Convolution

Black is Tissue A on background of Tissue B




SPM Interpretation

Folding Thickness  Misclassification Misregistration

OO

DO




ADNI AD vs Normal SPM




Voxel Based Regression

Gray Matter Density




Free-Surfer

Skull stripping based on deformation template




White Matter, Pial Surface Detection




Normal controls
(CDR-SB = 0)

(CDR-SB=0.5-1.0
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MCI
(CDR-SB = 1.5 - 2.5)
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Early AD
(CDR-SB = 3.0
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Annual
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A FreeSurfer

Cortical




Inflated Surface




World Geometry




Parcellation




ADNI| MRI

e Aims:

¢Ease of implementation

> Standard sequences

> Short sequence times
¢Reliability

> Stable products
¢Quality control

> Phantom



ADNI MRI Methods

® Sequence selection

¢Standard prescan and scouting procedure
recommended by the manufacturer

¢Sagittal 3D MP-RAGE

¢Sagittal 3D MP-RAGE repeat

oSagittal B1-calibration scan (phased array)
oSagittal B1-calibration scan (body coil)

¢ Axial proton density T2 dual contrast
FSE/TSE

® ADNI Phantom




Available MRI Systems

General Electric (GE) Healthcare Philips Medical Systems Siemens Medical Solutions

GE 1.5T Philips 1.5T Siemens 1.5T

«9.1M4 BC « Multi-Channel Scan List ASO » Avanto VB11

« 9.1M4 BC Phantom « R103 Multi-Channel » Avanto VB13

* 11.00M4 BRM 8Ch « R122 Multi-Channel » Avanto VB15

* 11.0M4 BRM 8Ch Phantom * Quad Head Scan List ASO « Avanto VB15 Phantom

+ 11.0M4 TwinSpeed BC « R103 Quad Head « Espree VB15

* 11.0M4 TwinSpeed BC Phantom + R122 Quad Head « Espree VB15 Phantom

« 11.0M4 TwinSpeed 8Ch « Sonata VA21 CP

« 11.0M4 TwinSpeed 8Ch Phantom « Sonata VA25 8Ch

+ 12.0M3 TwinSpeed 8Ch « Sonata VA25 CP

+ 12.0M3 TwinSpeed 8Ch Phantom « Symphony Ultra VA21 CP

+ 12.0M4 TwinSpeed 8Ch « Symphony Sprint VA25

+ 12.0M4 TwinSpeed 8Ch Phantom « Symphony VA21 VA25 CP Phantom

* 14.0M4 TwinSpeed 8Ch « Symphony VA30 CP

+ 14.0M4 TwinSpeed 8Ch Phantom

* 14.0M4 TwinSpeed BC

+ 14.0M4 TwinSpeed BC Phantom
GE 3.0T Philips 3.0T Siemens 3.0T

- E2M4 CRM 8Ch « Multi-Channel Scan List  Allegra VA25

« E2M4 CRM 8Ch Phantom « R104 Multi-Channel « Trio VA25 8Ch

« VH3M4 CRM BC « R122 Multi-Channel « Trio VB12T

- VH3M4 CRM BC Phantom * TrioTim VB13

+ G3M4 TwinSpeed 8Ch  Trio VB15

+ G3M4 TwinSpeed 8Ch Phantom  Trio VB15 Phantom

« 12.0M4 TwinSpeed 8Ch

+ 12.0M4 TwinSpeed 8Ch Phantom

* 14.0M4 TwinSpeed 8Ch

* 14.0M4 TwinSpeed 8Ch Phantom

http://adni.loni.ucla.edu/research/protocols/mri-protocols/
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Number of MRI
Acquisitions

o
MRI (1.5T) @
MRI (3T)

PET

@
&
@
) M

Normal @ Mild Cognitive Impairment @ Alzheimer's Disease

Everyone received 1.5 T MRI and 50% received an
additional 3T for comparison




Analysis Groups

® UCSF—Norbert Schuff
¢SNT hippocampus

oFreesurfer
e UCLA—Paul Thompson

¢ Tensor morphometry
e UCD—DeCarli/Carmichael
¢White matter disease/infarcts
® UCSD—Anders Dale
¢Modified Freesurfer
® University College of London—Nick Fox
+BBSI




Summary Results




Measures of Change in MCI:
ADAScog13 vs Hippocampal Volume

Hippocampus

ADNI, unpublished data.




Mean + (SD) of ADNI
Variables

Variable name

Annualized mean change by diagnosis

NC

MCI

AD

CSF AB4

CSF Tau

PIB

FDG-PET: SumZ2PNS
FDG-PET: ROI-avg
FDG-PET: DD-fROI
Hippocampus
Ventricles
ADAS-cog total
MMSE

CDR-SB

RAVLT 5-tral total

—0.94 (18)
3.45 (13)
0.098 (0.18)
=177 (1332)
—0.006 (0.06)
—0.019 (0.037)
—40 (84)

848 (973)

—0.54 (3.05)

0.0095 (1.14)
0.07 (0.33)
0.29 (7.8)

—1.4 (17)
2.34 (21)
—0.008 (0.18)

752 (2950)
—0.015 (0.064)
—0.047 (0.030)

—380(91)

1551 (1520)

1.05 (4.40)
—0.64 (2.5)

0.63 (1.16)
—1.37 (6.6)

—0.1 (14)
1.24 (24)
—0.004 (0.25)
2993 (4040)
—0.055 (0.067)
—0.081 (0.047)
—116 (93)
2540 (1861)
4.37 (6.60)
—2.4(4.1)
1.62 (2.20)
—3.62 (5.6)




Baseline MRl Measures

FreeSurfer

NC

MCI

AD

Hippocampus
Brain
Ventricles

UCD

3631 + 440
999417 + 96951
37994 + 20449

3240 + 521
992133 + 10104
44727 + 21454

2902 + 501
942935 + 100330
49489 + 22971

WMH
Volume (cm?)

SINLE

0.745 + 2.27

0.838 + 2.53

1.05 + 1.90

hippocampus
ventricles

3606 + 446
17934 + 10192

3170 + 533
22348 + 12150

2802 + 526
25815 + 13417




Longitudinal Change

FreeSurfer

NC

MCI

AD

Hippocampus
Brain
Ventricles

UCD

-36.4 + 2.0
-5580 + 258
1486 + 99

-65.6 £ 2.5
-9309 + 346
2935 + 146

-96.7 + 4.2
-13328 + 637
4775 + 277

WMH Volume

=81

0.028 + 0.048

0.085 + 0.052

0.155 + 0.106

VBSI
BBSI

SN

1.55 +1.79
6.76 + 6.7

3.07 + 3.0
12.27 + 9.4

487 +3.4
16.47 + 9.5

hippocampus
ventricles

-37.3 + 3.7
824 + 52

-72.8 + 3.3
1517 + 73

-99.7 + 4.9
2524 + 141




Hippocampus Cross-
Sectional v Longitudinal

4000.000

3500.000

3000.000
2500.000
2000.000 B Freesurfer
SNT

1500.000
1000.000

500.000

NC MCI AD

0.000

0.000
-10.000
-20.000
-30.000
-40.000 B Freesurfer
-50.000 SNT
-60.000
-70.000
-80.000
-90.000

-100.000




Boundary Shift Integral




FreeSurfer Rates of Change
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