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Purpose: prepare for tomorrow’s
tutorial

e (Genetic Variants
* Quality Control
* Imputation

e Association

* Visualization

* Prioritization




OUTLINE

Goal: be able to answer the following questions

What are some of the historical landmarks of
GWAS?

What is unique about GWAS data and data quality
considerations?

How do you test for genetic association?



TOWARDS GWAS

* Evidence for genetic role ?

— Population differences
— Familial aggregation

— Linkage ?
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LINKAGE
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e One cent

— Use properties of recombination to localize
— Track transmissions through families

* Second cent
— Use principle of similarity

“Sib-pairs that are phenotypically similar should
also be genotypically similar”’ -Penrose, 1935

— Identity by state / descent (IBS/IBD)

Linkage Analysis:
a two cent version
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I'16. 64. Scheme to illustrate a method of crossing over of
the chromosomes.

Thomas Hunt Morgan-

1933 Nobel "for his discoveries
concerning the role played by the
chromosome in heredity".



Recombination

Two Loci: A and B
Two Alleles at each Locus: {A,, A,}, {B,, B,}

Four Possible Haplotypes:

AbB, AB, AB A)b,

Ten Possible Diploid Genotypes (sometimes called diplotypes):

AB, AB, AB, AB, AB,AB, AB, A,B, A,B, A,B,
AB, A B, A)B, A,B, AB, A,B, A,B, A,B, A,B, A,B,
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Diploid Genotypes

1 2 3 - 5 6 7 8 9 10
AlBl AlBl AlBl AIBI AIB2 A1B2 AIBZ A2B1 AZBI A2B2
AlBl AIBZ AZBI A2B2 A1B2 A2B1 A2B2 A2B1 A2B2 A2B2

Recombination only
detectable 1in the double
heterozygotes
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Double Heterozygotes

A B,

/ A:5;
gametes / \\
ﬂ A B, A,B, A,B,

transmission probability

1-6 0 0 1-6
2 2

2 2

92 recombination rate (ranges from 0 to 0.5)

6 = 0.5 : unlinked S?e blue-

0 = 0 : no recombination




The Future of Genetic Studies of
Complex Human Diseases

Neil Risch and Kathleen Merikangas

SCIENCE ¢ VOL. 273 e 13 SEPTEMBER 1996

Has the genetic study of complex disorders
reached its limits? The persistent lack of
replicability of these reports of linkage be-
tween various loci and complex diseases
might imply that it has. We argue below that
the method that has been used successfully
(linkage analysis) to find major genes has lim-
ited power to detect genes of modest effect,
but that a different approach (association
studies) that utilizes candidate genes has far
greater power, even if one needs to test every
gene in the genome. Thus, the future of the
genetics of complex diseases is likely to require
large-scale testing by association analysis.




Box 2 | Linkage versus association

a Linkage At a fundamental level,
[ ] genetic association and
_______ : linkage analysis rely on
....... aa=o"" similar principles and
T 1] ]  assumptions®’. Both rely
on the co-inheritance of
O [— a(!jactjm DNA varia.l"n.s.
) with linkage capitalizing
on this by identifying
| | haplotypes that are
L I ] inherited intact over
| ] ] several generations
O D (such as in families or
pedigrees of known
b Association ancestry), and
association relying on
the retention of adjacent
DNA variants over
many generations (in
historic ancestries).
Thus, association
‘ 20 generations studies can be regarded
_ _ as very large linkage
| — BN studies of unobserved,
L o T D heobeiiges
In growing populations,
l s _— .. such as humans,

E . ol | recombination is the
[ | | ] primary force that
— — eliminates linkage and
- : association over

|
] generations™. When a
= functional mutation

- ] occurs (‘'m’ in the figure)

|| |  — perhaps one that
contributes to disease
— itdoessoona
haplotype of other pre-existing DNA variants. Because linkage focuses only on recent,
usually observable ancestry, in whom there have been relatively few opportunities for
recombination to occur, disease gene regions that are identified by linkage will often
be large, and can encompass hundreds or even thousands of possible genes across
many megabases of DNA (figure panel a). By contrast, association studies draw from
historic recombination so disease-associated regions are (theoretically) extremely
small in outbred random mating populations®, encompassing only one gene or gene
fragment (figure panel b). Through subsequent generations, as the disease mutation is
transmitted, recombination will cause it to be separated from the specific alleles of its
original haplotype. Particular DNA variants can remain together on ancestral
haplotypes for many generations. This type of non-random association of alleles is
known as linkage disequilibrium. It is linkage disequilibrium that provides the genetic
basis for most association strategies.

genetic association and
linkage analysis rely on
similar principles and
assumptions” . Both rely
on the co-inheritance of
adjacent DNA variants,
with linkage capitalizing
on this by identifying
haplotypes that are
inherited intact over
several generations
(such as in families or
pedigrees of known
ancestry), and
association relying on
the retention of adjacent
DNA variants over
many generations (in
historic ancestries).
Thus, association
studies can be regarded
as very large linkage
studies of unobserved,
hypothetical pedigrees.

Cardon & Bell, Nat Rev Gen (2001)



LINKAGE DISEQUILIBRIUM
(LD)



A definition

Linkage Disequilibrium — allelic association between two genetic loci



What you need to know about LD

* It can be defined several ways mathematically, each definition
with 1ts own pros/cons

(I will show a couple briefly)
* It degrades over generations

* [ts properties are used for GWAS
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Linkage Disequilibrium

Al Bl
/ 4,8,
gametes / \\
AB AB, AB AB

transmission frequency
4 o X3 Xy
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Linkage Disequilibrium

Gametes A,B, A,B, A.B, A,B,
Frequency X, Xy X3 X,
Allele A, A, B, B,
Frequency | pa;=X;1%X; | Pa2=Xs+Xy | Pp1=X1+Xs | Pp2=Xo*Xy

D = Observed - Expected

D =X~ p, Dy
D=x—(x +x,)(x +x;)

D=xx,—x,x,
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Linkage Disequilibrium

After one generation of random mating:

x, =x, —6D o .
¥, = x, + 6D D, = x1x, —X;X;
x; =X, +6D D,_, = (1-6)D

X, =x,—6D

After t generations:

D =(1-6)'D,
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What does this mean?

. t
D, theta t D,
1 0.5 10 0.001
1 0.1 10 0.35
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Normalized LD Parameters

D
D

max

D' =

D, = min(pppapaPp) if D is positive
= mMin(p4PppPasPey) I D is negative

Now, LD ranges from -1 to +1
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r2

Most commonly used LD measure
-- squared correlation coefficient --

, D?
r =
Ps1Pa2Pp1Pg2
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% LD take home points

* It can be defined several ways mathematically, each definition
with 1ts own pros/cons

* It degrades over generations

* Its properties are used for GWAS



IMPUTATION
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Historical context of some large-scale initiatives 2>
towards imputation

* Human Genome Project
— 2003 (kind of)

Typical imputation scenario
— 2 males, 2 females L p

¢ HapMap 00 1 1100 1 1 00 0 11 1| ]
HapMap or 00 0 0011 1 O 11 1 00 1 Reference
— 2005/2007 /2009 1,000Genomes [1 11 1100 0 1 00 0 00 o] [ haplotypes
— initially 269; expanded to ~1400 T —————————
* 1000 Genomes Project DI S PR
- 2010/2012/2015 Cases and 0 ? 17?1 ? 1 07 1
controls typed = oot ; e — Study
— guess? onsNpehp | 1 7 2270 7 777 007 0 genotypes
* Haplotype Reference Consortium 07 772720 7 7 77 017 1
2016 17 ? 2172 1 ? ? ?2?2 1 17?2 2 _

— 18trelease is ~65k haplotypes

R http://mathgen.stats.ox.ac.uk/impute/impute v2.html
All of Us (PMI Initiative) ?
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Goals:

m identify all the approximate 30,000 genes in human DNA,

m determine the sequences of the 3 billion chemical base pairs that make up human
DNA,

m store this information in databases,

m improve tools for data analysis,

m transfer related technologies to the private sector, and

m address the ethical, legal, and social issues (ELSI) that may arise from the project.

Human Genome Project

Milestones:

m 1990: Project initiated as joint effort of U.S. Department of Energy and the National
Institutes of Health

m June 2000: Completion of a working draft of the entire human genome

m February 2001: Analyses of the working draft are published

m April 2003: HGP sequencing is completed and Project is declared finished two years
ahead of schedule

Universityof

Kentucky

U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003 %
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HapMap

An NIH program to chart genetic variation
within the human genome

* Begun in 2002, the project is a 3-year
effort to construct a map of the patterns of
SNPs (single nucleotide polymorphisms)
that occur across populations in Africa,
Asia, and the United States.

» Consortium of researchers from six
countries

* Researchers hope that dramatically
decreasing the number of individual SNPs
to be scanned will provide a shortcut for
identifying the DNA regions associated
with common complex diseases

* Map may also be useful in understanding
how genetic variation contributes to
responses in environmental factors

Vol 437|127 October 2005|doi10.1038/nature04226 nature
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Vol 449|18 October 2007|doi10.1038/ nature 06258 nature

ARTICLES

A second generation human haplotype
map of over 3.1 million SNPs

The International HapMap Consortium*

We describe the Phase Il HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs)
genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variationin
the populations surveyed. The map is estimated to capture untyped common variation with an average maximum 7 of
between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide
genotyping products captures common Phase Il SNPs with an average maximum r* of up to 0.8 in African and up to 0.95 in
non-African populations, and that potential gains in power in association studies can be obtained through imputation. These
data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within
a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all
common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination
rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased
differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or
efficacy of natural selection between populations.
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What is the 1000 Genomes Project ?

* International multi-center collaboration building on HapMap
data to establish the most comprehensive catalogue of human
genetic variation available

* Phase I: 1,092 complete genomes from 14 populations
published in Nature, October 2012

* Freely accessible public databases

* Final phase of project brings total genotyped to 2504
individuals from 26 populations worldwide

% Universitvof
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28 OCTOBER 2010 | VOL 467 | NATURE | 1061

ARTICL!

doi:10.1038/nature09534

A map of human genome variation from
population-scale sequencing

The 1000 Genomes Project Consortium®*
56 | NATURE | VOL 491 | | NOVEMBER 2012

The 1000 Genomes Project aims to provide a deep characterization of human genome seq ARTI LE
for investigating the relationship between genotype and phenotype. Here we present '1
project, designed to develop and compare different strategies for genome-wide sequ
platforms. We undertook three projects: low-coverage whole-genome sequencing
populations; high-coverage sequencing of two mother-father-child trios; and exorn
individuals from seven populations. We describe the location, allele frequency and

approximately 15 million single nucleotide polymorphisms, 1 million short insertior An integrated map Of genetic Variation

structural variants, most of which were previously undescribed. We show that, becaus
majority of common variation, over 95% of the currently accessible variants found in an f 1 0 9 2 h

data set. On average, each person is found to carry approximately 250 to 300 loss-of-f r Om 5 uman genomes
genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrat

to inform association and functional studies. From the two trios, we directly estimate thy The 1000 Genomes Project Consortium*

substitution mutations to be approximately 10™° per base pair per generation. We ex

signatures of natural selection, and identify a marked reduction of genetic variation in
due to selection at linked sites. These methods and public data will support the next pha

d0i:10.1038/nature11632

By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to
build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092
individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome
sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we
provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and
deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different
profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation,
which is further increased by the action of purifying selection. We show that evolutionary conservation and coding
consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially
across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites,
such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of
accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and
low-frequency variants in individuals from diverse, including admixed, populations.




68 | NATURE | VOL 526 | 1 OCTOBER 2015

ARTICLE

doi:10.1038/nature15393

A global reference for human

genetic variation

The 1000 Genomes Project Consortium*

The 1000 Genomes Project set out to provide
applying whole-genome sequencing to a diy
completion of the project, having reconstructed|
tion of low-coverage whole-genome sequenc
characterized a broad spectrum of genetic var|
polymorphisms (SNPs), 3.6 million short insej
onto high-quality haplotypes. This resource I::J
ancestries. We describe the distribution of ge
common disease studies.

ARTICLE

JPEN

doi:10.1038/nature15394

An integrated map of structural variation

in 2,504 human genomes

A list of authors and their affiliations appears at the end of the paper.

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human
genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced
variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks
in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting
population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability
of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by
genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we
uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters
of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through
individual mutational events. Our catalogue will enhance future studies ¢~ «t=rtrimal vavinnt dncnameanher fueatingg]
impact and disease association. 1 OCTOBER 2015 | VOL 526 | NATURE | 75




From Where?
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Figure S2. 1000 Genomes Project Phase | populations
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A reference panel of 64,976 haplotypes for genotype

Shane McCarthy"8, Sayantan Das?>%, Warren Kretzschmar%, Olivier Delaneau®, Andrew R Wood®,
Alexander Teumer”#, Hyun Min Kang??, Christian Fuchsberger?3, Petr Danecek?, Kevin Sharp!?, Yang Luo!,
Carlo Sidore!!, Alan Kwong??, Nicholas Timpson'2, Seppo Koskinen!3, Scott Vrieze!*!5, Laura J Scott?3,

He Zhang!6, Anubha Mahajan*, Jan Veldink!7, Ulrike Peters'®!9, Carlos Pato?’, Cornelia M van Duijn?!,
Christopher E Gillies?, Ilaria Gandin??, Massimo Mezzavilla$25, Arthur Gilly!, Massimiliano Cocca??,

Michela Traglia®, Andrea Angius'!, Jeffrey C Barrett', Dorrett Boomsma?’, Kari Branham?®, Gerome Breen>*-°,
Chad M Brummett3!, Fabio Busonero!!, Harry Campbell?2, Andrew Chan?334, Sai Chen?3-3536, Emily Chew?7,
Francis S Collins?%, Laura J Corbin'2, George Davey Smith!2, George Dedoussis*®, Marcus Dorr#0:#!,

Aliki-Eleni Farmaki®®, Luigi Ferrucci*2, Lukas Forer'?, Ross M Fraser®!, Stacey Gabriel*4, Shawn Levy*5,

Leif Groop*-48, Tabitha Harrison'®, Andrew Hattersley*?, Oddgeir L Holmen>?, Kristian Hveem®,

Matthias Kretzler>3651, James C Lee5253, Matt McGue>*, Thomas Meitinger55-57, David Melzer38, Josine L Min'2,
Karen L Mohlke>?, John B Vincenté?-62, Matthias Nauck®*!, Deborah Nickerson53, Aarno Palotie64-68

Michele Pato2?, Nicola Pirastu?3, Melvin McInnis$®, J Brent Richards’

, Cinzia Sala2, Veikko Salomaa!3,

David Schlessinger”, Sebastian Schoenherr®3, P Eline Slagboom?, Kerrin Small”2, Timothy Spector”2,

Dwight Stambolian”®, Marcus Tuke®, Jaakko Tuomilehto” "%, Leonard H Van den Berg!”, Wouter Van
Rheenen!?, Uwe Volker*!:#0, Cisca Wijmenga®!, Daniela Toniolo?, Eleftheria Zeggini!, Paolo Gasparini?*25,
Matthew G Sampson?2, James F Wilson?282, Timothy Frayling, Paul I W de Bakker$384, Morris A Swertz81:85,
Steven McCarrol13657, Charles Kooperberg!®, Annelot Dekker!?, David Altshuler*6688-91 Cristen Willer!6-3536,
William Iacono®*, Samuli Ripatti®2, Nicole Soranzo!-93%4, Klaudia Walter!, Anand Swaroop?, Francesco Cucca'l,
Carl A Anderson', Richard M Myers*, Michael Boehnke>*, Mark I McCarthy*%%, Richard Durbin"%,
Gongalo Abecasis?** & Jonathan Marchini*!%% for the Haplotype Reference Consortium

We describe a reference panel of 64,976 human haplotypes at
39,235,157 SNPs constructed using whole-genome sequence
data from 20 studies of predominantly European ancestry.
Using this resource leads to accurate genotype imputation at
minor allele frequencies as low as 0.1% and a large increase
in the number of SNPs tested in association studies, and it can
help to discover and refine causal loci. We describe remote
server resources that allow researchers to carry out imputation
and phasing consistently and efficiently.

Over the last decade, large-scale international collaborative efforts
have created successively larger and more ancestrally diverse genctic
variation resources. For example, in 2007, the International HapMap
Project produced a haplotype reference panel of 420 haplotypes at
3.1 million SNPs in three continental populations!. More recently,
the 1000 Genomes Project has produced a series of data sets built
using low-coverage whole-genome sequencing, culminating in 2015

in a reference panel (1000GP3) of 5,008 haplotypes at over 88 million
variants from 26 worldwide populations®. In addition, several other
projects have collected low-coverage whole-genome sequencing data
in large numbers of samples that could potentially also be used to
build haplotype reference panels®->. A major use of these resources has
been to facilitate imputation of unobserved genotypes into genome-
wide association study (GWAS) samples that have been assayed
using relatively sparse genome-wide microarray chips. As reference
pancls have increased in number of haplotypes, SNPs and populations,
genotype imputation accuracy has increased, allowing researchers
to impute and test SNPs for association at ever lower minor
allele frequencies (MAFs). A succession of methods developments has
provided researchers with the tools to cope with these increasingly
larger panclss-11,

We formed the Haplotype Reference Consortium (HRC; see URLs)
to bring together as many whole-genome sequencing data scts as
possible to build a much larger combined haplotype reference panel.

A full list of affiliations appears at the end of the paper.
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OVERVIEW  PARTICIPATING COHORTS

Haplotype Reference

Participating cohorts

onsortium

The Haplotype Reference Consortium

USING THE RESOURCE

CONTACT  SITELIST

A growing list of cohorts/groups that are contributing to the consortium is as follows

HRC COHORTS

Cohort
1 UK10K
2 Sardinia
3 IBD
4 GoT2D
5 BRIDGES
6 1000 Genomes
7 GoNL
8 AMD
9 HUNT
10 SiSu + Kuusamo
11 INGI-FVG
12 INGI-Val Borbera
13 MCTFR
14 HELIC
15 ORCADES
16 inCHIANTI
17 GECCO
18 GPC
19  Project MinE - NL
20 NEPTUNE

Totals

# samples
in Release 1

3715
3445
4478
2710
2487
2495
748
3305
1023
1918
250
225
1325
247
398
676

1131
697
935
403
32611

Total #

samples Depth

3781
3514
4478
2974
4000
2535
748
3305
1254
1918
250
225
1339
2000
399
680

3000
768
1250
403
38821

6.5x

4x

4x +2x
4x/Exome
6-8x (12x)
4x/Exome
12x

4x

4x

4x

4-10x

6x

10x

4x (1x)

4x

7x

4-6x
30x
45x
4x

Website Principal Investigators
http://www.uk10k. org/

https:/isardinia.irp nia.nih.gov/
http://www.ibdresearch.co.uk/

Richard Durbin, Nicole Soranzo, George Davey-Smith, Tim Spector, Nick Timpson
Francesco Cucca, Serena Sanna, Goncalo Abecasis

UK IBD Genetics Consortium

vpe2diabetesgenetics.org/infor Mike Boehnke, David Altshuler, Mark McCarthy

Mike Boehnke, Richard Myers

Richard Durbin, Goncalo Abecasis

Paul de Bakker

Goncalo Abecasis, Anand Swaroop, Dwight Stambolian

Cristen Willer, Kristian Hveem

Richard Durbin, Aarno Palotie, Samuli Ripatti
Paolo Gasparini, Nicole Soranzo, Nicola Piratsu
Daniela Toniolo, Nicole Soranzo

Goncalo Abecasis, Scott Vrieze

Eleftheria Zeggini

w.orcades.ed.ac uk/orcades/ Jim Wilson, Richard Durbin

inchiantistudy net/bindex html  Tim Frayling, Andrew Wood, Michael Weedon

https v fhcre.org/en/labs/phs/projects/c
prevention/projects/gecco.html Ulrike Peters

Carlos Pato, Michele Pato, Steven McCarroll

http://projectmine.com Jan Veldink, Leonard van den Berg

http://www.neptune-study.org/

Matthias Kretzler, Matthew Sampson




% Take home points

* Many subjects...
* From many populations...
* Assayed for many variants

* Quality of reference haplotypes continues to improve

* Data are publicly available



QUALITY CONTROL



Quality Control

* Asin ANY analysis, we want quality data
— Garbage in = garbage out

* So what here 1s unique?
— Mendelian inheritance

— Lab-based protocols
» Sample duplication for concordance
 Call rates
* Chromosomal anomalies

— Population genetics, e.g., Hardy-Weinberg Equilibrium testing

* Much research in this area, updated protocols

% Universityof
Kentucky



Hardy-Weinberg Equilibrium

* Allele and genotype frequencies * Implications
remain constant over time, — Can derive expected genotype
when. .. frequencies from allele frequencies
— If these deviate from realized
— Large population genotype frequencies, then one of
— Random mating the assumptions may not hold
— Sex-independent genotype frequencies OR

— No natural selection .
— Genotyping error

OR

— No migration

— No mutation
— No inbreeding — Association ?

% Universityof
Kentucky



| PROTOCOL 1564 | VOL.5 NO.9 | 2010 | NATURE PROTOCOLS

Data quality control in genetic case-control

association studies

Carl A Anderson'?, Fredrik H Pettersson’, Geraldine M Clarke!, Lon R Cardon?, Andrew P Morris' &
Krina T Zondervan'

'Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. *Statistical Genetics, Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. *GlaxoSmithKline, King of Prussia, Pennsylvania, USA. Correspondence should be addressed to
C.A.A. (carLanderson@sanger.ac.uk) or K.T.Z. (krinaz@well.ox.ac.uk).

Published online 26 August 2010; doi:10.1038/nprot.2010.116

This protocol details the steps for data quality assessment and control that are typically carried out during case-control association
studies. The steps described involve the identification and removal of DNA samples and markers that introduce bias. These

critical steps are paramount to the success of a case-control study and are necessary before statistically testing for association.

We describe how to use PLINK, a tool for handling SNP data, to perform assessments of failure rate per individual and per SNP

and to assess the degree of relatedness between individuals. We also detail other quality-control procedures, including the use

of SMARTPCA software for the identification of ancestral outliers. These platforms were selected because they are user-friendly,
widely used and computationally efficient. Steps needed to detect and establish a disease association using case-control data are
not discussed here. Issues concerning study design and marker selection in case-control studies have been discussed in our earlier
protocols. This protocol, which is routinely used in our labs, should take approximately 8 h to complete.

Curr Protoc Hum Genet. 2011 Jan;Chapter 1:Unit1.19. doi: 10.1002/0471142905.hg0119s68.

Quality control procedures for genome-wide association studies.

Turner S', Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, de Andrade M, Doheny KF, Haines JL,
Hayes G, Jarvik G, Jiana L, Kullo IJ, Li R, Ling H, Manolio TA, Matsumoto M, McCarty CA, McDavid AN, Mirel DB, Paschall
JE, Pugh EW, Rasmussen LV, Wilke RA. Zuvich RL, Ritchie MD.

= Author information

1 Center for Human Genetics Research, Department of Molecular Physiology & Biophysics, Vanderbilt
University, Nashville, Tennessee, USA.
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http://bioconductor.org/packages/release/bioc/html/GWASTools.html

Home » Bioconductor 3 5 » Software Packages » GWASTools GWAS Data Cleaning

GENEVA Coordinating Center
G WA S TO O | S Department of Biostatistics

University of Washington

April 24, 2017

downloads top 20% | posts 2/2/2/0
commits 0.83 test coverage 71%
m = Contents
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Modes of Inheritance



Coding Genotypes

Assume a biallelic marker (SNP)

A

or

G

Each chromosome will have one
of the two possible alleles

FID D Al A2
0 0001 A A
0 0002 A G
0 0003 G G
0 0004 A A




MOde Of inheritance (MOI) Additive
A pattern of how a disease i1s
transmitted 1n families .
§ Dominant 1
<
B —_— . >
O
&
o
gj: 0
Carrier Carrier
‘ ‘ ‘ ‘ Recessive
| 0
= " 5w

Non-carrier Carrier Carrier Carrier
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Additive Mode
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Dominant Mode
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FID 11D Al A2

0 | 0001 A A A: risk allele

0 0002 A G

0 0003 G G

0 0004 A A

$
Additive Dominant Recessive
FID IID Gl FID IID Gl FID IID Gl

0 0001 2 0 0001 1 0 0001 1
0 0002 1 0 0002 1 0 0002 0
0 0003 0 0 0003 0 0 0003 0
0 0004 2 0 0004 1 0 1

0004
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Tests for Association
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Tests for Association

* Discrete Traits

— Cochrane-Armitage Trend Test

— Alleles Test

— General RxC Contingency Table (Chi-square)
* Other Types

— Continuous

— Time-to-event

— Multivariate




Cochrane-Armitage

Copies of Allele

0 1 2
Case A, A, A, M,
Control U, U, U, M,
N, N, N, N

» __ NIN(A +24,)- M(N, +2N,)T’
AT M (N=M)IN(N, + 4N,)— (N, + 2N, )]
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Alleles Test

+ -

Case | A,+2A, | A+2A, | 2M,

Control | U,+2U, | U,+2U, | 2M,
N, +2N, N,+2N, 2N

e ON[2N(A, +2A,)—2M (N, +2N,)T
' 2M2(N - M)[2N(N, +2N,)— (N, +2N,)*]

Note: Variance (denominator) assumes HWE!!!
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General Chi-Square

Copies of Allele

0 1 2
Case A, A, A, M,
Control U, U, U, M,
Ny N, N, N

2 _ [Ao - E(Ao)]2 4 [A1 - E(A1)]2 4 [Az - E(Az)]z 4 [U() - E(U())]2 + [U1 - E(Ul)]z + [U2 - E(Uz)]2

E(A)

E(A,)

EU,)

EWU)

E(U,)

b
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Logistic Regression

1

b )
l-p,

logit(p,) = B, + BX

Universit
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Model Interpretation

Additive model (X=0, I or 2)

lr(1 f ; ] =B, + X In(f,) = one - unit increase

Note: This is analogous to an odds ratio (OR) from a 2x3 table

Genotype Model (indicator variables G; =0 or 1)

Subjects with G, =1 are the reference group

1{ Ly )=ﬂo+ﬂlq + B,G,

1-p, OR for subjects with G, compared to G, = "
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E(yi) = Bo + p1Xij or log~ fi - = Po + P1Xy;

3 T

0,00 0° © 09 go0am™ ‘:0 °Q oo

P-value P-value
) .
= ® < Top hitter
S
1 o °
o,
\é o 00 ° o ° ° o
X))
2

Chromosomal position
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% Association take home points

* Many ways to seek out and test for a genetic association

* Mode of inheritance, while somewhat a misnomer 1n complex
disease genetics, reflects our assumptions on how genotype
influences phenotype

* We will focus largely on the flexible frameworks of linear and
logistic regression



Population Stratification
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Genetic Associations

e Truth

— Causal locus (direct)
— In LD with causal locus (indirect)

* Chance

— If you test 100 times, you’ll see ~ 5 tests < 0.05

— The association 1s due to chance - no causal underpinning
* Bias

— Association 1s not causal

— Yellow fingers associated with lung cancer...
— ¢.g. Population stratification




Genetic Associations

e Truth

— Causal locus (direct)
— In LD with causal locus (indirect)




Truth

A genetic association test finds

A

|

Phenotype
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Truth

A genetic association test finds

A

|

Phenotype

LD: highly correlated
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Genetic Associations

* Chance
— If you test 100 times, you’ll see ~ 5 tests < 0.05
— The association 1s due to chance - no causal underpinning




Chance

 Each point represents the association Qengme wide
for each locus. significance
e There are more than 6 million level A.n

P eoma
Q
~
©
()]
o
|

p=0.05= 10130103

4 6 8 9 10 11 12 13 = 15 17 19 21
Chromosome

Manhattan plot: It is a scatter plot used to display the p-values in
oenome-wide association studies (GWAS
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Genetic Associations

* Bias
— Association 1s not causal
— Yellow fingers associated with lung cancer...
— ¢.g. Population stratification




Quantile-quantile (QQ) Plots

* Good way of seeing what’s going on overall
— Any “‘real” hits?
— Any systematic problems?

 In GWAS, MOST SNPs will not be associated with
whatever phenotype 1s examined, 1.e., they are from
the null distribution




Quantile-quantile (QQ) Plots
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Quantile-quantile (QQ) Plots
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Quantile-quantile (QQ) Plots
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Bias

A genetic association test finds

A

Phenotype
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Bias

A genetic associatio

n test finds

A

Spurious
association

v

Phenotype

N

N

Ancestry

True risk factor

b
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Stratification

* Essentially a confounder!

* Yellow fingers associated with lung cancer...

* How does 1t happen?




Famous Example
Knowler et al (1988)

i
%40- . 80
- _ i -
§3o &.Eso
[ S
s 20- 5 40-
g'o— gm—n
s
§ 0- S o-
| - E | | |

I
0o 4 8 0 4 8
Indion Heritage (Eighths)

Figure 3  Age-adjusted prevalence (+1 standard error) of dia-
betes (left) and of Gm?* /%7 (right), according to Indian heritage,
among residents of the Gila River Indian Community.
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Cardon et al (2003)

Full heritage American
Indian population
- =
Gm3;5,13,14 ~1% ~99%

(NIDDM prevalence=40%)

-

Caucasian
population
- =
Gm3;5,13,14 ~66% ~34%

(NIDDM prevalence=15%)

Study without knowledge of genetic background:

Odds ratio 0-27,

Gm3:5,13,14| Cases | Controls
haplotype
+ 7-8%
- 92:2% | 71.0%

29-0% 95% Cl 0-18-0-40
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Stratification Happens

* Historical strategies to deal with it

— Self-Reported Ancestry
* Match (design) or Adjust (analysis)

— Use other genetic markers (ancestry informative)
* Genomic Control
* STRUCTURE

* PCA/Eigenstrat
* Use a family-based design

 More later
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