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Some discipline specific (?)

assumptions

Questions of interest are about “causation”: "would intervening
on exposure X change the value of outcomeY?” i.e.Yy_, vsYy_,
Assume we never know this at the individual level, because we
never find out whatY would have been if exposure had been
different than it actually was

UnfortunatelyY,_, #Y|X=1 because the people with X=1 may also
tend to have some other feature, say U, that influences the value
of Y.

U is a confounder: a common prior cause of X andY.

We can estimate the effect of X onY at a group level by
randomization, pseudo-randomization, or controlling for
common causes of X andY.



Mendelian Randomization Design:

pseudo-randomization

Use genotype as an instrument to estimate the effect
of a phenotype on the outcome.

Genotype (G) 7-) Phenotype (X) > Disease (Y)
Unmeasured /

Confounders

MR is a special case of the long established econometric method
of instrumental variables analysis.

Appealing when causality is uncertain:
Unavoidable confounding
Reverse causation
Uncertainty: biomarker/endophenotype or cause



Mendelian Randomization Design

Use genotype as an instrument to estimate the effect of
a phenotype on the outcome.

FTO/MC4R (G) 7* BMI (X) > Alzheimer’s (YY)
Unmeasured /

Confounders

MR is a special case of the long established econometric method
of instrumental variables analysis.

Appealing when causality is uncertain:
Unavoidable confounding
Reverse causation
Uncertainty: biomarker/endophenotype or cause



Mendelian Randomization Design

Use genotype as an instrument to estimate the effect of
a phenotype on the outcome.

FTO/I\/IC4R(G)Z> BMI.,, ——> Alzheimer’s (Y)— BMlIyg,

Unmeasured /

Confounders

For age-related outcomes, MR is appealing because we think
incipient disease affects many of the “"exposures” of interest,
l.e. "reverse causation”.



Mendelian Randomization Design

Might be used to estimate the effect of any phenotype
on any outcome, if you can identify a gene that affects the
phenotype and that gene has no other reason to be
associated with the outcome.

For example, could be applied to estimate the health or
cognitive effects of a:

Protein that is the direct product of a gene

Protein whose degradation or creation is under control of a gene
Behavior influenced by gene product

Affective state influenced by gene product

Health or cognitive state influenced by the gene product



Intuition for IV for Epidemiologists: RCT

Randomization can be thought of as a special
case of an instrumental variable:

Random assignment—>X-2>Y

We wish to test whether X affectsY

We randomly assign people to receive treatment
or exposure X

We compare the outcomeY across levels of
randomization (ITT), rather than across levels of
exposure or take-up

With imperfect compliance, we assume ITT is an
underestimate of the causal effect of XonY



Intuition for IV

The ITT is a valid test for the null hypothesis
of no average causal effect of X onYY if:

There is at least some take-up (randomization
affects exposure)

Randomization is fair (no common cause of
randomization and the outcome)

Randomization influences the outcome only via
the treatment X (not via related treatment X’ or
via compensatory pathways in the controls)

These criteria for a valid RCT correspond
exactly with the criteria for a valid IV/MR
analysis



Instrument Assumptions: in intuitive

terms

G is an instrument for the influence of X onY if:
G predicts X
X does not affect G
G has no effect onY unless the effect is mediated by X
No other variables influence both G andY

Predictor of Outcome of
Interest (X) Interest (YY)

Omitted Variable/ /

Confounder

Instrument (G)

10



Instrument Assumptions: in DAG

Terminology

G is an instrument for the influence of X onY if:
G is not an effect of X
G is not independent of X (typically: G affects X)

Every unblocked path between G andY contains an
arrow pointing into X

Instrument (G) Predictorof _~ Outcome of
Interest (X) Interest (Y)

Omitted Variable/ /

Confounder
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D-separation

A path between two variables is blocked If:
The path contains a non-collider that is in z,
or
The path contains a collider which is not in z,
and no descendent of the collider Is In z.

If there Is an unblocked path linking x and vy,
then x and y will typically be statistically
dependent (unless there Is a perfectly offsetting
balance between two paths).
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Obtaining IV Effect Estimates

Gene > Phenotype > Disease

Wald Estimates:

|V Effect = Pr(Disease|Gene=1)-Pr(Disease|Gene=0)
Pr(Phenotype|Gene=1)-Pr(Phenotype|Gene=0)
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Obtaining IV Effect Estimates

Gene

Wald Estimates:

IV Effect = Pr(Disease

Gene=1)-Pr(Disease

> Disease

Gene=0)

Pr(Phenotype|Gene=1)-Pr(Phenotype|Gene=0)
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Obtaining IV Effect Estimates

Gene > Phenotype —  Disease
Wald Estimates:

IV Effect = Pr(Disease|Gene=1)-Pr(Disease|Gene=0)
Pr(Phenotype|Gene=1)-Pr(Phenotype|Gene=0)

IV was developed with a focus on binary variables (instrument yes/no;
phenotype present/absent; disease present/absent), so conventional
estimator is based on risk differences but correlations are fine if you
assume everything is linear: c=a*b and therefore b=c/a. 15



Variations on IV Estimators

Wald Estimates:

Effect = (Difference in Avg Outcome between Genotypes)
(Difference in Avg Phenotype between Genotypes)

Two Stage Least Squares Advantages (25LS):
Multiple instruments
Control for covariates

Separate Sample IV:
15t and 2"9 stage of a 25LS are from different data sets
Often relevant in MR

Generalized method of moments

Residual control approaches
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Interpreting IV Effect Estimates

Any given exposure may have
different effects on different
people in the population

COOOO
COOOO
COOOO
OO
OO

IV effect estimates are not the
same as population average
treatment effect (i.e., what
would happen to the average
value of Y if | treated everyone in
the whole population).

* Alternative assumptions are required to support any
specific interpretation of the IV estimate, the most
common is “treatment effect on compliers”.



Whose Causal Effect?

What the
person will
do if
assigned to
control
treatment:

What the person will do if assigned
to experimental treatment:

Take
Take control .
experimental
. O Never- Compliers
X S| Takers
O

Contrarians/ Always
Defiers Takers

Take
experimental
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Interpreting IV Effect Estimates

The effect of exposure (X) on the
outcome (Y) among those people
whose exposure was determined
by the gene.

This may or may not be the same
as the effect of the exposure on
other people, much less the whole
population

COOOO
COOOO
COOOO
OO
OO

It may not even be the same sign as the effect
of the exposure on the whole population
Impossible to know precisely whose exposure
was determined by the gene



Causal Structures Violating IV Assumptions:

Population stratification and Pleiotropy

FTO

|

Population

AD

Population Stratification

Group (Pop)

Unmeasured
/ Phenotype (P)
FTO » BMI

Pleiotropy
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Causal Structures that (may) Violate IV

Assumptions: multi-component phenotype

Abdominal AD Phenotypes with
obesity multiple versions or
components
Gene — Thigh Fat BMI

* Gene predicts BMI

* No other pathways link the gene to AD

* A component of BMI (abdominal obesity) affects AD

* Gene will be independent of AD

* IV analysis will suggest the incorrect inference that BMI does
not affect AD

21



Causal Structures that (may) Violate IV

Assumptions: multi-component phenotype

Abdominal AD

obesity Phe.notypes. with
multiple versions or
Gene — Thigh Fat BMI components

* |V analysis will suggest the incorrect inference that BMI does
not affect AD

* Correctinference: the phenotype affected by the gene
(thigh fat) does not affect AD.

* Intheory, could use this to help identify causally relevant
variations on the phenotype (i.e. is it important to
distinguish between abdominal or peripheral obesity? How
about knee fat and ankle fat?)
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Violating IV Assumptions:

mismeasuring the causal phenotype

BMI

measured

Structurally related to “pleiotropy”: IV estimate of
the effect of Z on AD corresponds to effect of P on AD
only under special circumstances

FTO —— P > AD



Mismeasuring the causal

phenotype

BMI

measured

This structure will almost always be relevant in MR, because the

gene affects lifelong values of the phenotype, but we measure at
only one or a few moments.

Appropriate to test the null hypothesis: BMI has no effect on AD.
Therefore, helpful to present the "ITT” estimate of the association
between the gene and the outcome.

IV estimate with BMI_...,.q C@N be the same as, larger, or smaller
than the IV estimate with BwmI

causal



Mismeasuring the causal

phenotype

How does IV relate to IV

measured causal

FT0 —— BIv”causal ________ > AD
Blv”measured
Classical measurement error:
Ug BIvlImeasured_BI\/Ilcausal'i'e
%g Slope=1 IVmeasured IVcausal

15 20 25 30 35

bmi_causa



Mismeasuring the causal

phenotype

How does IV _ ... ..qrelatetoIV_, .2
FT0 —— BIv”causal ________ > AD
BMI BIvlImeasuredz:l"s*BMIcausal'l'e
measured
o If the IV estimate with BMI_, .., >0 then:
= IVmeasured < IVcausal
38 Slope=1.5

20 25 30 35
bmi_causal

A;
()]



Mismeasuring the causal

phenotype

?
How does IV_ ... ..qrelatetoIV_, ../’
FTO —— BIv”causal ________ > AD
BMI ; BI\/IImeasured=0'8*BMIcausal'l'e
measure
_ If the IV estimate with BMI_, .., >0 then:
22
§§ Slope=0.6 IVmeasured > IVcausal

15 20 25 30 35
bmi_causal



MR is sensitive to violations: pleiotropy

Unmeasured

Phenotype (P)
OLS estimate: 2.16

FTO > BMI Memory

Unmeasured

Phenotype (P)
44
FTO > BMI

|V estimate: 2.8

------------------- Memory
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MR is sensitive to violations: pleiotropy with

a weaker instrument

Unmeasured

Phenotype (P)
OLS estimate: 2.16

FTO > BMI

Unmeasured
Phenotype (P)

IV estimate: 3.6

FTO L R
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Improving MR Studies

Stronger genetic determinants of the
phenotype
Multiple genes: increasingly feasible in GWAS

Poly/multi-genic scores
Sensitive tests for assumptions



Polygenic scores as first stage of MR

Candidate gene approach

Allele count

Empirically weighted
Z=PRS=b1*SNP1+b2*SNP2+b3*SNP3+bk*SNPk

Where each ba...bk is based on the best available
evidence on the effect of the SNP on the phenotype,
e.g., from a recent large meta-analysis of GWAS
studies.

And each SNP1...SNPk is an allele count

Under this formula, the value of the polygenic risk
score is the predicted value if you specified a linear
regression model with the best known betas.




Polygenic scores as first stage of MR

Candidate gene approach

Allele count

Empirically weighted
Z=PRS=b1*SNP1+b2*SNP2+b3*SNP3+bk*SNPk

Where each bi...bk is based on the best available evidence on
the effect of the SNP on the phenotype, e.qg., from a recent
large meta-analysis of GWAS studies.

This is appropriate only if you assume your sample
corresponds with the population in the prior meta-analysis.

Improves statistical power if meta-analyzed betas are better
estimates than internal betas.

Eliminates weak instruments bias.



Polygenic scores as first stage of MR

Candidate gene approach
Allele count
Empirically weighted
Genome wide scoring

We don’t care about the G=>X mechanism, just need to
predict X

Genome wide scores (e.qg. all p<.o5) might work

Limitation: any new gene can violate the IV
assumptions

Small violations can lead to big biases



Evaluating the assumptions

Constraints implied by theory
Over-identification tests

IV inequality constraints
Stratification-based tests



Evaluating MR Studies: leverage prior

assumptions about confounding

Often, field is only interested in knowing if a conventional
effect estimate is biased up

Other direction of bias not of interest, or not considered
plausible

Compare |V effect estimate to conventional effect estimate: if
conventional effect estimate is positively confounded,
IV<conventional

4, equivalent versions of this test: no more convincing to show
all 4.

Relies on assumption regarding the direction of confounding: if
you don't know the direction, the test is not informative

Not guaranteed to be consistent in non-linear causal structures
(but doesn’t completely rely on linearity).



Evaluating MR Studies: Over-

iIdentification tests

Use multiple instrumental variables to conduct
over-identification tests.

Other genes or even polymorphisms of the same
gene might provide additional instruments.
Cannot detect violations of the IV assumptions if
all instruments have identical biasing pathways.
May also reject even when all instruments are
valid if the model is incorrectly assumed to be
linear or the phenotype is composite. These
tests generally have low statistical power.




Evaluating MR Studies:

Instrumental inequality tests

These tests are applicable only when the causal
phenotype is known to be categorical.

Certain inequalities are impossible given the IV
assumptions: if you see them, IV must not be right

max. [Pr(X=0, Y=1|G=i)]smin.[1- Pr(Y=0, X=0|G=i)]
max.[Pr(X=0, Y=1|Z=i)+ Pr(X=1, Y=1|Z=i)]+max[Pr(X=0, Y=1|Z=i)
+ Pr(X=1, Y=0|Z=i)]+ max,[Pr(X=0, Y=0|Z=i)] < 2
max, [Pr(X=1,Y=1|Z=i)]smin[1- Pr(Y=0, X=1|Z=i)]
Detects extreme violations of the assumptions
With more instrumental variables, more

opportunities for violations of tests.



Evaluating MR Studies: Modifying

factors

Identify factors that modify the genotype-
phenotype association.

Compare the |V effect estimate across groups
in which the population association between
the instrument and the phenotype is either

silenced or reversed.
This test could identify a biased instrument if

the biasing pathway is active in both
subgroups.



Conclusions

Host of research questions potentially amenable to
MR

Cheap, “easy” (I!!), applicable to stubborn questions
that are expensive and hard to study with trials
Assumptions are strong, often seem implausible, so
efforts to test are critical for credible MR

GW data: more data, more opportunities to answer
the question (more opportunities to incorrectly
answer the question?)

Routinely implement assessments of instrument
validity

Major challenge: statistical power because genes
aren’t very strong predictors
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