Disclosure: Alison Goate*,* D.Phil.

NIH-NIA, JPB Foundation, Rainwater Foundation, Anonymous Foundation, Neurodegeneration Consortium

None

Cognition Therapeutics, Denali Therapeutics, AbbVie, Pfizer

Royalties Taconic, Athena Diagnostics

A History of Alzheimer's disease Genetics **Friday Harbor, WA (September 6th, 2017)**

Alison Goate, D.Phil. Alison.goate@mssm.edu

Goals of this talk

- § **Early AD Genetics I: Mendelian Causes of AD**
- Early AD Genetics II: Identification of common high effect variants influencing AD risk
- § Genome-wide Association Studies (GWAS): Identification of common low-effect variants
	- **E** Methods to fine map GWAS loci
- Whole Genome/Exome Sequencing: Identification of rare moderate-effect variants

Genetic Architecture of human disease

TA Manolio *et al. Nature* **461, 747-753 (2009) doi:10.1038/nature08494**

Rare alleles causing Mendelian disease

- § Autosomal Dominant Alzheimer's disease
	- ú *Amyloid Precursor Protein* (Goate et al., Nature, 1991)
	- *Presenilin 1* (Sherrington et al., Nature, 1995)
	- **□** *Presenilin 2* **(Rogaev et al., Nature, 1995; Levy-Lahad et al.,** Science, 1995)
- § Autosomal recessive Alzheimer's disease
	- ú *Amyloid Precursor Protein* (Di Fede et al., Science 2009)

Most mutations causing Familial AD are in Presenilin 1

3.4% of clinically diagnosed NIALOAD families carry known functional variants

Cruchaga et al., PLoS One 2012; Harms et al., Jama Neurol. 2013

Goals of this talk

- Early AD Genetics I: Mendelian Causes of AD
- § **Early AD Genetics II: Identification of common high effect variants influencing AD risk**
- § Genome-wide Association Studies (GWAS): Identification of common low-effect variants
	- **E** Methods to fine map GWAS loci
- Whole Genome/Exome Sequencing: Identification of rare moderate-effect variants

Genetic Architecture of human disease

TA Manolio *et al. Nature* **461, 747-753 (2009) doi:10.1038/nature08494**

High effect-size common variants

- § *Apolipoprotein E4* shows dose dependent increase in AD risk (OR=3 for 1 allele, OR=8 for 2 alleles) Corder et al., Science,1993; Strittmatter et al., PNAS, 1993
- § *Apolipoprotein E2* decreases in AD risk (OR=0.5)

Corder et al., Nat. Genet. 1994

■ *APOE* genotype influences age at onset of AD

From: Roses et al., JNEN 1994

The Amyloid Hypothesis

Factors affecting clearance and conformation of Aß:

- APOE
- CLU
- •Degrading proteases
- Anti-A_B antibodies

Trisomy 21

 \bullet Free radical generation

Modified from David M. Holtzman, MD; photomicrographs courtesy of Daniel W. McKeel, MD.

Goals of this talk

- Early AD Genetics I: Mendelian Causes of AD
- Early AD Genetics II: Identification of common high effect variants influencing AD risk
- § **Genome-wide Association Studies (GWAS): Identification of common low-effect variants**
	- ú **Methods to fine map GWAS loci**
- Whole Genome/Exome Sequencing: Identification of rare moderate-effect variants

Genetic Architecture of human disease

TA Manolio *et al. Nature* **461, 747-753 (2009) doi:10.1038/nature08494**

Identification of common variants of low effect size

- § Genome-Wide Association Studies (GWAS)
	- **E** Allows evaluation of millions of DNA variants simultaneously
	- **In Most common design is a comparison of unrelated** cases and controls
		- Families
		- Endophenotypes quantitative traits e.g. imaging, fluid biomarkers
	- **E** Very large sample sizes increase power

More than 20 loci associated with Alzheimer's disease risk

Lambert JC et al., Nature Genetics (2013) 45, 1452-1458

Some GWAS SNPs implicate a single gene

Lambert et al 2013

Some GWAS SNPs implicate many genes

Pathway analysis implicates efferocytosis in the etiology of AD

Edoardo Marcora

CANONICAL PATHWAYS

DISEASES & BIOLOGICAL FUNCTIONS

Integrative analysis of GWAS and expression eQTL data for the discovery of disease genes

Polarization of cis-regulatory effects of autoimmune and neurodegenerative risk alleles in monocytes and T-cells

AD risk alleles enriched in hematopoietic epigenomic annotations (LD score regression)

Shown are the 10 cell types that are enriched at P < 0.05 after Bonferroni correction

IGAP phase 1 SNP summary stats used as input

Huang et al., Nat. Neurosci. 20: 1052-1061, 2017

Some GWAS SNPs implicate many genes

Protective allele associated with lower *SPI1* expression in monocytes and macrophages

Huang et al., Nat. Neurosci. 20: 1052-1061, 2017

PU.1 cistrome enriched in AD GWAS loci

- LD score regression used to estimate enrichment of AD heritability across the entire PU.1 cistrome, using ChIP-Seq data in human peripheral blood monocytes and macrophages derived from them
	- **Enrichment of AD heritability in both** monocytes (56 fold enrichment, P = 0.003) and macrophages (60 fold enrichment, P = 0.001) but not schizophrenia heritability

PU.1 binds to the promoter and regulatory regions of 10/22 AD GWAS risk loci in CD14+ monocytes

Functional PU.1 binding motifs in multiple AD loci including INPP5D, MS4A4A, MS4A6A, TREML2, TREM2, PILRB, PICALM, CD33, TRIP4 and TYROBP

Huang et al., Nat. Neurosci. 20: 1052-1061, 2017

Variants that reduce risk for AD

- § Common Variants
	- *APOE2* decreases risk for AD by 50%
	- ^E Some GWAS loci reduce risk by 10-15%
		- *CLU, PICALM, MS4A6A, CD33, EPHA1, SORL1, SLC24A/RIN3, DSG2, MEF2C, NME8, ZCWPW1, CASS4, TREML2 S144G*

Goals of this talk

- Early AD Genetics I: Mendelian Causes of AD
- Early AD Genetics II: Identification of common high effect variants influencing AD risk
- § Genome-wide Association Studies (GWAS): Identification of common low-effect variants
	- **E** Methods to fine map GWAS loci
- § **Whole Genome/Exome Sequencing: Identification of rare moderate-effect variants**

Genetic Architecture of human disease

TA Manolio *et al. Nature* **461, 747-753 (2009) doi:10.1038/nature08494**

Identification of low frequency and rare variants of moderate effect size

- § Whole Genome Sequencing (WGS)
- § Whole Exome Sequencing (WES)
- § Targeted Sequencing
- § RNA Sequencing (RNAseq)
	- **Example 2 Performed in unrelated individuals or families**
	- Likely have bigger impact on risk

TREM2, ABI3 and *PLCG2* associated with AD risk

Sims et al., Nature Genetics 2017

Microglial Protein Interaction Network Contains AD risk genes

Sims et al., Nat. Genet. 2017

Many genes likely to carry rare variants associated with increased AD risk

- § ADAM10 (Kim et al., 2009)
- § TREM2 (Jonsson et al., 2013; Guerreiro et al., 2013)
- § PLD3 (Cruchaga et al., 2014)
- § AKAP9 (Logue et al., 2014)
- § UN5C (Wetzel-Smith et al., 2014)
- SORL1 (Pottier et al. Vardarajan et al., 2015; Sleegers et al., AAIC2015)
- ABCA7 (Steinberg et al., 2015; Cuyvers et al. 2015)

Sequencing identifies rare variant in triggering receptor expressed on myeloid cells 2 (*TREM2*) as risk factor for AD

TH NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

TREM2 Variants in Alzheimer's Disease

Rita Guerreiro, Ph.D., Aleksandra Wojtas, M.S., Jose Bras, Ph.D., Minerva Carrasguillo, Ph.D., Ekaterina Rogaeva, Ph.D., Elisa Majounie, Ph.D., Carlos Cruchaga, Ph.D., Celeste Sassi, M.D., John S.K. Kauwe, Ph.D., Steven Younkin, M.D., Ph.D., Lilinaz Hazrati, M.D., Ph.D., John Collinge, M.D., Jennifer Pocock, Ph.D., Tammaryn Lishley, Ph.D., Julie Williams, Ph.D., Jean-Charles Lambert, Ph.D., Philippe Amouyel, M.D., Ph.D., Alison Goate, Ph.D., Rosa Rademakers, Ph.D., Kevin Morgan, Ph.D., John Powell, Ph.D., Peter St. George-Hyslop, M.D., Andrew Singleton, Ph.D., and John Hardy, Ph.D., for the Alzheimer Genetic Analysis Group*

THE NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Variant of TREM2 Associated with the Risk of Alzheimer's Disease

Thorlakur Jonsson, Ph.D., Hreinn Stefansson; Ph.D., Stacy Steinberg Ph.D., Ingileif Jonsdottir, Ph.D., Palmi V. Jonsson, M.D., Jon Snaedal, M.D., Siguibiom Biomsson, M.D., Johanna Huttenlocher, B.S., Allan L. Levey, M.D., Ph.D., James J. Lah, M.D., Ph.D., Dan Rujescu, M.D., Harald Hampel, M.D., Ina Giegling, Ph.D., Ole A. Andreassen, M.D., Ph.D., Knut Engedal, M.D., Ph.D., Ingun Ulstein, M.D., Ph.D., Soljan Djurovic, Ph.D., Carla Ibrahim-Verbaas, M.D., Albert Hofman, M.D., Ph.D., M. Arfan Ikram, M.D., Ph.D., Cornelia M van Duijn, Ph.D., Unnur Thorsteinsdottir, Ph.D., Augustine Kong, Ph.D., and Kari Stefansson, M.D., Ph.D.

TREM2 variants associated with AD risk

*TREM2***-gene-based analysis**

Resequencing 2,082 cases and 1,648 controls (European Americans) Jin et al., 2014; Jin et al., 2015

Resequencing 412 cases and 139 controls followed by direct genotyping six variants in 1,058 cases and 2,738 controls (African Americans)

R47H, R62H, D87N, E151K, W191X, L211P

$$
P = 0.02
$$

OR = 1.22 (1.01-1.47)

TREM2 and disease

- Recessive loss of function mutations in *TREM2* cause Nasu-Hakola disease
	- Bone cysts and fractures
	- ú Personality changes and dementia
	- White matter disease, no plaques and tangles
	- **E** Death in forties
- Rare heterozygous mutations (R47H, R62H) associated with 2-3 fold increase in risk for late onset AD

Role of *TREM2* in Neurodegeneration

Wang et al., Cell 160: 1061-71 (2015)

- TREM2 senses lipids exposed after membrane damage
- TREM2 is a receptor for APOE containing lipoproteins
- Activation of TREM2 triggers protein tyrosine phosphorylation through SYK
- AD risk variants thought to be partial loss of function

TREM2 is critical for Aβ-associated microgliosis

(A) Microglia cluster around Aβ plaque deposits in humans and mouse models of Aβ deposition. (B) TREM2 deficiency markedly impairs microgliosis around Aβ plaques.

Published in: Jason D. Ulrich; David M. Holtzman; *ACS Chem. Neurosci.* **2016,** 7, 420-427. DOI: 10.1021/acschemneuro.5b00313 Copyright © 2016 American Chemical Society

Many genes likely to carry rare variants associated with increased AD risk

- § ADAM10 (Kim et al., 2009)
- § TREM2 (Jonsson et al., 2013; Guerreiro et al., 2013)
- § PLD3 (Cruchaga et al., 2014)
- § AKAP9 (Logue et al., 2014)
- § UN5C (Wetzel-Smith et al., 2014)
- § SORL1 (Pottier et al. 2012; Vardarajan et al., 2015; Sleegers et al., AAIC2015)
- § ABCA7 (Steinberg et al., 2015; Cuyvers et al. 2015)

ABCA7 Implicated as an AD risk factor by GWAS

- European populations
	- Hollingworth et al 2011, Naj et al 2011, Lambert et al 2013
- African American population
	- Reitz et al. 2013
- Odds ratio for risk higher in African Americans than Europeans

Loss of function variants in *ABCA7* increase risk for AD

Steinberg, et al, 2015, Vardarajan, et al, 2015, Cuyvers, et al, 2015, Cukier et al., submitted, Del Aguila et al., submitted

ABCA7 deletion increases AD risk in African American cohorts

Cukier, Kunkle, Vardarajan, et al, (submitted) presented at AAIC2015

Whole Exome and Whole Genome Sequencing in AD

- **The NIA/NHGRI AD sequencing project (ADSP)**
	- Whole Exome Sequencing
		- § 5000 AD cases
		- 5000 nondemented elderly controls
		- 685 unrelated cases from LOAD families
	- Whole Genome Sequencing
		- 584 individuals from 100 LOAD families
- Other cohorts with WES or WGS
	- § ADNI
	- **NIMH LOAD families**
	- § NIA LOAD families
	- **Various European cohorts**

APPA673T protects against AD by reducing BACE cleavage of APP

From Jonsson et al., Nature (2012) 488:96-99

Summary

- **More than 20 risk loci identified by GWAS**
- Several pathways are enriched for GWAS loci including immune response, lipid metabolism and endocytosis
- **Expression of 1/3 of GWAS genes enriched in** monocytes and microglia
- Many risk/protective genes have already been identified by WES and WGS
- Different variants found in different populations making replication tougher
- A more complete atlas of these risk alleles will identify the key dysregulated networks leading to AD providing a new generation of drug targets for treatment

Acknowledgements

MSSM: Alan Renton, Kuan-Lin Huang, Edoardo Marcora, Manav Kapoor, Sarah Bertelsen, Lahari Koganti,

Washington University: Carlos Cruchaga, Celeste Karch, Sheng Chih Jin, John Morris, David Holtzman, Anne Fagan.

BYU: Keoni Kauwe

Genentech: Tim Behrens & Rob Graham,

ADGC/GERAD/IGAP/ADSP Consortium investigators NIALOAD investigators

Funding NIA, JPB Foundation, Anonymous Foundation, Rainwater Foundation

Acknowledgements

Kuan Lin Huang, Edoardo Marcora, Alan Renton, Sarah Bertelsen Collaborators: Carlos Cruchaga, Celeste Karch, Keoni Kauwe

ADGC/GERAD/IGAP/ADSP Consortium investigators NIALOAD investigators Tim Behrens & Rob Graham,

Funding

NIA, BrightFocus, JPB Foundation, Anonymous Foundation, Rainwater Foundation, Genentech

ADGC/GERAD/IGAP/ADSP **investigators**

Thank you to the many families who have made this genetics research possible over the last 4 decades

"It's marvellous. In future it may be possible to prevent the disorder happening. While it will not help me. I hope it will help my children" Carol Jennings, The Times, February 16th, 1991