

Acknowledgements

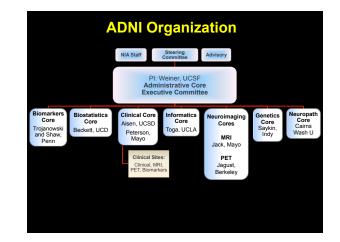
Funded in part by Grant R13AG030995-01A1 from the National Institute on Aging

The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

Friday Harbor Psychometrics Workshop 2011

Disclosures

Consultant GE Healthcare Bayer Healthcare Synarc Janssen Alzheimer Immunotherapy Genentech Tau Rx Otsuka Pharmaceuticals



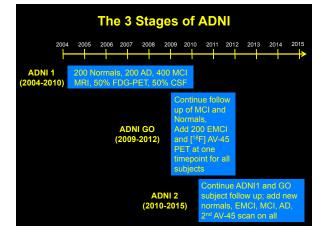
NIA Alzheimer's Disease Neuroimaging Initiative

PI: Michael Weiner

Clinical Core: Leon Thal/Paul Aisen /Ronald Petersen MRI Core: Clifford Jack PET Core: William Jagust Infomatics Core: Arthur Toga Biomarker Core: John Trojanowski Biostatistics Core: Laurel Beckett Genetics Core: Andy Saykin Neuropathology Core: Nigel Cairns Industry Scientific Advisory Board: Enchi Liu (Janssen Alzheimer Immunotherapy)

Investigators, Coordinators, Participants at 60+ sites in North America

Key Features of ADNI


- Testing of relatively well-established potential biomarkers for AD
- Oriented towards improving clinical trial design and methodology

ADNI is not:

A study of AD diagnostic instruments A general "neuroscience of aging" project

<u>But</u>

Defining biomarker dynamics involves development of models of disease

ADNI 1 Goals

Standardize the acquisition and analysis of biomarkers for AD for use in clinical trials

Validate the use of biomarkers for measurement of disease outcomes

Power as a surrogate in clinical trials Relationships between biomarkers Associations with clinical severity

ADNI 1 Study Design

MCI (n= 400): 0, 6, 12, 18, 24, 36 months AD (n= 200): 0, 6, 12, 24 months Controls (n= 200): 0, 6, 12, 24, 36 months All subjects (age 55-90): Clinical, MRI (1.5 T) at all time points FDG PET at all time points in 50% 3 T MRI at all time points in 25% Blood and urine at all time points from all subjects, CSF from 50% of subjects PIB "add on": 19 C, 19 AD, 65 MCI up to 3 years

GO and ADNI 2 Goals

Continue ADNI 1 subjects and goals Examine models of longitudinal biomarker change and relationships Examine prognostic use of biomarkers

Investigate earlier stages of preclinical AD (EMCI)

Obtain 2 timepoints of amyloid-PET and FDG-PET

DTI, ASL, fcMRI on 1/3 of subjects each

Neuropathology to validate diagnosis

Blood for DNA and RNA

ADNI GO Study Design EMCI

Recruit, define and characterize 200 EMCI: CDR = 0.5, Meet MCI criteria but memory is 0.5 – 1.5 SD below education adjusted norms

EMCI Exam baseline, 6, 12 months

EMCI 3T MRI at baseline, 3, 6, 12 months

CSF and blood (A_β, DNA, RNA) on all EMCI

ADNI GO Study Design (2)

- Continue annual clinical follow up of all normal and MCI subjects in ADNI 1
- [¹⁸F]Florbetapir (AV-45) PET and FDG-PET on all subjects at one timepoint
- Annual 1.5T MRI on MCI and normals from ADNI 1
- CSF on all EMCIs and all subjects with CSF in ADNI1
- Blood samples (Aβ, DNA, RNA) on all subjects

ADNI 2 Study Design New Subjects

Enroll: 150 new normal, 100 EMCI, 150 MCI, 150 AD

Obtain 2 Florbetapir-PET and FDG PET scans on all new subjects (2 years apart)

Annual clinical evaluation on normals, EMCI, MCI 3T MRI at baseline, 3, 6, 12 months and yearly CSF and RNA annually

Annual clinical evaluation for AD up to 24 months 3T MRI at baseline, 3, 6, 12, 24 months CSF and RNA at baseline and 24 months

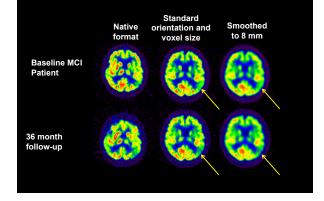
ADNI 2 Study Design Follow Up Subjects

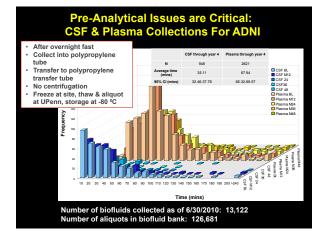
- Continue annual clinical follow up of all normal, EMCI and MCI subjects from ADNI 1 and GO
- Obtain a second Florbetapir-PET and FDG-PET scan on all subjects from ADNI1 and GO 2 years after initial scan

Annual 3T MRI on all subjects from ADNI GO

Annual 1.5 T MRI on all subjects from ADNI 1

ADNI Technical Achievements

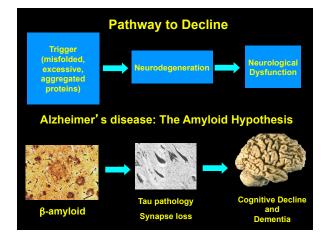

Standardize MRI structural image acquisition


- Standardize FDG-PET and amyloid-PET image acquisition
- Standardize collection, shipping, aliquoting and curation of biofluids, characterize variability

Definition of EMCI

Archiving, logging, tracking all clinical and image data with full public availability

ADNI FDG Image Processing


			A	DNI	MRI	Dat	a			
Dx	#	BL	M3	M6	M12	M18	M24	M36	M48	M60
N	249	226	0	201	193	0	98	127	47	4
EMCI	140	124	75	34	0	0	0	0	0	0
MCI	415	388		349	324	179	200	146	40	
AD	193	185	0	154	140	0	69	0	0	0
Total	997	923	75	738	657	179	367	273	87	4

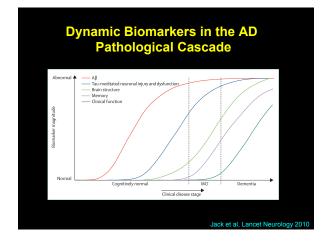
ADNI FDG-PET Data									
Dx	#	BL	M6	M12	M18	M24	M36	M48	M60
N	249	103	94	85	0	84	69	54	19
EMCI	140	92	0	0	0	0	0	0	0
MCI	415	206	188	177	154	142	112	57	4
AD	193	95	86	74	0	58	0	0	0
Total	997	496	368	336	154	284	181	111	23

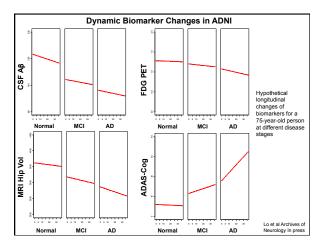
ADNI PIB-PET Data									
Dx	#	BL	M6	M12	M18	M24	M36	M48	M60
N	249	0	0	17	0	17	13	2	0
EMCI	140	0	0	0	0	0	0	0	0
MCI	415	15		51		47	27	2	
AD	193	5	0	15	0	14	0	0	0
Total	997	20		83		78	40	4	

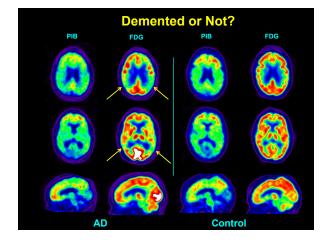
		ADN	II FI	orbe	etap	ir-Pl	ET C)ata		
Dx	#	BL	M6	M12	M18	M24	M36	M48	M60	Any
N	249	1	0	0	0	0	0	35	21	57
EMCI	140	107	0	0	0	0	0	0	0	107
MCI	415						6	49	6	62
AD	193	0	0	0	0	0	0	0	0	0
Total	997	109	0	0	0	0	6	84	27	226

ADNI CSF Data								
Dx	#	BL	M12	M24	M36			
N	249	114	94	22	15			
EMCI	140							
MCI	415	195	154	44	8			
AD	193	100	74	17	0			
Total	997	409	322	83	23			

ADNI Conceptual Model


A β is the earliest detectable biomarker change This does not mean A β causes AD

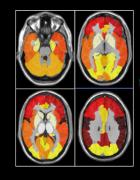

Initiates "downstream" structural and functional events synaptic alterations/hypometabolism tau/NFTs


regional atrophy

Cognitive and clinical change are late effects

Jack et al, Lancet Neurology 2010

ADNI Image Data


3-D volumes that reflect anatomy (MRI), glucose metabolism or A β deposition (PET)

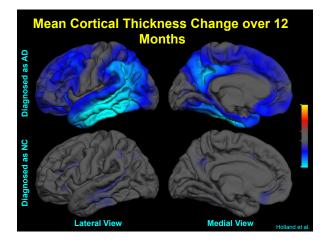
All image volumes can be processed to yield quantitative continuous measures of brain volumes or PET tracer uptake

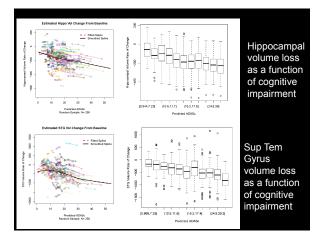
PET data is normalized to an "unaffected" brain region Continuous measures can be segmented

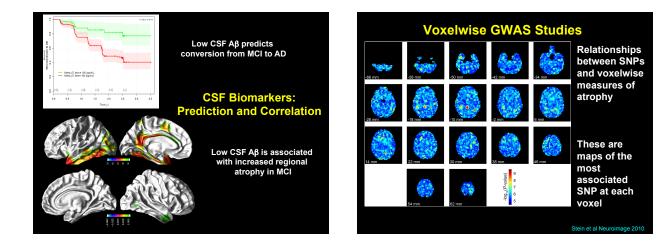
Image volumes themselves can be used as dependent measures on a voxelwise level May be exploratory, type I error

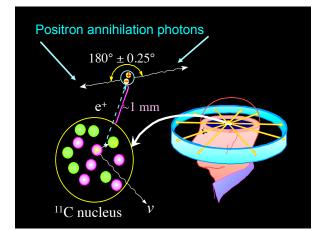
MR Processing Methods: Freesurfer Cortical Parcellation

Cortical and hippocampal volumes used as dependent variables

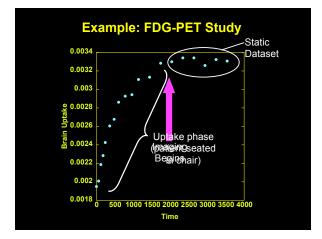

Power of Cognitive Tests: Detect a 25% Change in 1 year (2 ARM) in AD

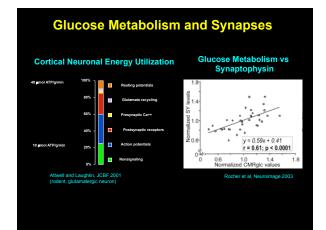

Test	Sample Size	
MMSE	803	
RAVLT	607	
ADAS	592	
CDR SOB	449	

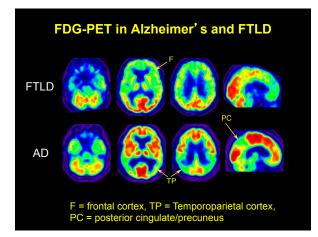

De		r of Cognitive T nange in 1 year		in M(CI
	Test	Sample Size			
	RAVLT	6056			
	ADAS	4547			
	MMSE	3879			
	CDR SOB	853			


MRI as Surrogate Outcome in AD (N=128)								
Lab	Variable	N / arm	N.S. differ					
Alexander	L hippo form	268						
Alexander	L mid temp	191						
Schuff-FS	Ventricles	133						
Fox	Ventricle ch%	129						
Fox	VBSI	128						
Fox	DBCBSI %	127						
Studholme	% change	70						
Schuff-FS	Hippocampus	50						

Sample size to detect 25% reduction in rate of change with 80% power and α = 0.05


What happens during a PET scan?


Subject receives an intravenous injection of a radiotracer (technologist inserts iv, Nuclear Medicine MD supervises injection)


The radiotracer circulates and is taken up by brain

Timing and %uptake depend upon the tracer

Data usually collected at a time after injection that depends on pharmacokinetics/equilibrium of tracer

PET Analytic Approaches

- Full kinetic models requires blood sampling/not done in ADNI
- Regions-of-interest Normalization to an "unaffected" brain region (pons, cerebellum)
- Voxel-based (SPM) Statistical models with brain volumes as dependent measure (also normalized)