Meta-ROI Generation

Literature search identified 22 papers with whole brain analyses and either MNI or Talairach coordinates of voxels with maximal differences between AD/MCI/Controls or longitudinal change

Peak voxels plotted in MNI coordinates

PET vs MRI as Surrogate Outcome in AD (N=38)					
Lab	Variable	N / arm	N.S. differ]
Jagust	Avg ROI	364			
Foster	>3SD blw NL	285			
Alexander	L mid temp	228			
Fox	VBSI	101			
Reiman	fROI(mask04)	93			
Schuff-FS	Hippocampus	54			

Sample size to detect 25% reduction in rate of change with 80% power and α = 0.05

Baseline Posterior Cingulate Metabolism Lowers Sample Size in MCI

Random effects model for data at baseline, 6, 12, 18 and 24 months

Inclusion of baseline posterior cingulate metabolism as a covariate increases power

Univariate results: Prediction of conversion Baseline Hazard ratio p-value 1.94 p = 0.10 FDG-PET 2.94 p = 0.02imaging Conversion to Hippocampal 2.49 p = 0.04 AD volume CSF markers 3.99 p = 0.03(p-tau₁₈₁/Aß) Episodic p = 0.01 4.68 memory Landau et al Neurology 2010

PIB "Add on" Protocol

Initiated in 2006

14 Centers, 103 Subjects 19 AD, 19 Normals, 65 MCI

Most subjects recruited at visit 2 (some 1 or 3)

Up to 3 scans/subject

ROI analysis - average cortical uptake

Amyloid Imaging in ADNI2 and GO

[¹¹C]PIB has a short half-life (20 min)

- [¹⁸F] has a 2-hour half-life and is used clinically with FDG in cancer imaging
- Currently 4 [¹⁸F] Aβ imaging agents are available
- ADNI has partnered with Avid radiopharmaceuticals to utilize AV-45 or Florbetapir

PIB/Florbetapir Comparisons

<u>Subjects</u> N = 21 6 Normal 15 MCI

All have Florbetapir 16 have PIB 1 year prior 5 have PIB 2 years prior

Cerebellar (gray matter) normalization Mean Cortical ROI = Frontal, Lat temporal, Anterior cingulate, precuneus, parietal

21

22

