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Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

• Functional annotation in protein-coding genes

• Functional annotation in non-coding regions

• Other useful tools

3. Applications of functional annotations

• Functional SNP fine-mapping

• Partitioning heritability and genetic covariance

• Gene-level analysis

• Effect size estimation and risk prediction
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Background

Despite the advancements, GWAS has its limitations

It is difficult to identify all associations

• Polygenicity and low effect size

It remains challenging to interpret the findings

• 88% of significant associations are in the non-coding genome

• LD makes it challenging to identify biologically functional SNPs
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Background

To solve these problems, we need better functional annotations for the 

(non-coding) human genome.

Only ~2% of the human genome encodes proteins. However, the rest 

98% may be critically involved in a variety of regulatory machinery.

gene?

enhancer?related to neurological function?

@susejohnston
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Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

• Functional annotation in protein-coding genes

• Functional annotation in non-coding regions

• Other useful tools

3. Applications of functional annotations

• Functional SNP fine-mapping

• Partitioning heritability and genetic covariance

• Gene-level analysis

• Effect size estimation and risk prediction
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Functional annotation in protein-coding genes

• Synonymous variant

• Missense variant
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Functional annotation in protein-coding genes

• Loss-of-function variant
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Functional annotation in protein-coding genes

Computation methods (supervised)

We understand the functional mechanism of genes. Training data are 

also available (OMIM, ClinVar)

• SIFT

• PolyPhen2

• MetaSVM

algorithm
Maine Coon

Russian Blue
?
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Functional annotation in protein-coding genes

Application – de novo mutation analysis
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Functional annotation in protein-coding genes

Application – de novo mutation analysis
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Functional annotation in non-coding regions

What about non-coding regions?

DNA conservation

UCSC genome browser
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Functional annotation in non-coding regions

Transcriptomic information

• ncRNA

• eQTL
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Functional annotation in non-coding regions

Epigenetic information
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Functional annotation in non-coding regions

Computational methods based on supervised learning

• Labeled data + Predictive features + Algorithm = Score

• CADD

• GWAVA

algorithm
Maine Coon

Russian Blue
?
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Functional annotation in non-coding regions

Computational methods based on unsupervised learning

• Unlabeled data + Predictive features + Algorithm = Score

• GenoCanyon, GenoSkyline, GenoSkyline-Plus

• EIGEN

• ChromHMM

algorithm
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Other useful tools

UCSC genome browser

Annovar – annotate your variant list using many functional annotations
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Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

• Functional annotation in protein-coding genes

• Functional annotation in non-coding regions

• Other useful tools

3. Applications of functional annotations

• Functional SNP fine-mapping

• Partitioning heritability and genetic covariance

• Gene-level analysis

• Effect size estimation and risk prediction
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Functional SNP fine-mapping

How to identify functional SNP at a GWAS locus?

• PAINTOR

• FGWAS

• GenoWAP

Goal:
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Functional SNP fine-mapping

• GenoWAP

EM algorithm

ℙ "	 	$, &) Lu et al. 2015
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Functional SNP fine-mapping

• GenoWAP
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Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

• Functional annotation in protein-coding genes

• Functional annotation in non-coding regions

• Other useful tools

3. Applications of functional annotations

• Functional SNP fine-mapping

• Partitioning heritability and genetic covariance

• Gene-level analysis

• Effect size estimation and risk prediction
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Partitioning heritability and genetic covariance

LD score regression

• Estimate (partition) heritability using GWAS summary statistics

• We expect to see stronger associations in regions with high LD

• It can be shown that this relationship is linear!

( )*+ =
-ℎ+

/ 0* + 1

heritability

LD score

sample size

number of SNPs

GWAS associations

Bulik-Sullivan et al. 2014

Finucane et al. 2015



23

Partitioning heritability and genetic covariance

LD score regression

• The model can be extended to partition heritability by functional 

annotation

• This makes it possible to calculate enrichment 

34567ℎ/849 =
%	ℎ8569;<6069=	8>?0;648@
%	A84B/8	7BC858@
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Partitioning heritability and genetic covariance

Lu et al. 2017
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Partitioning heritability and genetic covariance

• Genetic covariance quantifies shared genetics among complex traits

Bulik-Sullivan et al. 2015

!! = !!!! + !
!

!!!
 

!! = !!!! + !
!

!!!
 

 
! !! = ! !! = 0!!!"#!!! !!!!! = !!

!!
!,!!!!! = 1,… ,!!

!

genetic covariance
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• GNOVA, a principled framework to perform annotation-stratified 

genetic covariance estimation

Partitioning heritability and genetic covariance

Lu et al. 2017
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We dissected the genetic covariance between late-onset Alzheimer’s 

disease (LOAD) and amyotrophic lateral sclerosis (ALS)

LOAD: IGAP phase-I (17,008 cases, 37,154 controls)

ALS: MinE project (12,577 cases, 23,475 controls)

Annotation Category Covariance P-value 

Non-stratified GNOVA 0.016 (0.004) 2.0×10-4 
LDSC 0.012 (0.007) 0.075 

GenoCanyon 
functional 0.016 (0.004) 8.2×10-5 
non-functional 0.003 (0.004) 0.377 

MAF 

Q1 -0.001 (0.003) 0.842 
Q2 0.003 (0.004) 0.361 
Q3 0.004 (0.004) 0.327 
Q4 0.008 (0.003) 0.005 

 

Partitioning heritability and genetic covariance

Lu et al. 2017
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Genetic covariance between LOAD and ALS is proportional to the size of 

the functional genome on each chromosome. This suggests a polygenic

genetic covariance structure.

Partitioning heritability and genetic covariance

Lu et al. 2017
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Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

• Functional annotation in protein-coding genes

• Functional annotation in non-coding regions

• Other useful tools

3. Applications of functional annotations

• Functional SNP fine-mapping

• Partitioning heritability and genetic covariance

• Gene-level analysis

• Effect size estimation and risk prediction
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Gene-level analysis

PrediXcan and TWAS

• Impute gene expression using genotype information

• Perform association test using imputed expression

Gamezon et al. 2015
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Gene-level analysis

PrediXcan and TWAS

Idea is similar to colocalization

Often identify signals in irrelevant tissues

Aguet et al. 2016
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Gene-level analysis

PrediXcan and TWAS

Need a metric to summarize information across all tissues

This is very similar to “burden test for common SNPs” 
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Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

• Functional annotation in protein-coding genes

• Functional annotation in non-coding regions

• Other useful tools

3. Applications of functional annotations

• Functional SNP fine-mapping

• Partitioning heritability and genetic covariance

• Gene-level analysis

• Effect size estimation and risk prediction
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Effect size estimation and risk prediction

AnnoPred

Remember we can connect disease with tissues?

Such connections can help estimate SNPs’ effect sizes

34567ℎ/849 =
%	ℎ8569;<6069=	8>?0;648@
%	A84B/8	7BC858@

( D	|	DF, GH

Hu et al. 2017
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Effect size estimation and risk prediction

AnnoPred

SNPs with high prior show stronger associations and more consistent 

effect directions in validation cohorts

Hu et al. 2017
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Effect size estimation and risk prediction

AnnoPred

We achieved higher risk prediction accuracy across five complex 

diseases

Hu et al. 2017
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Effect size estimation and risk prediction

PleioPred

We have further extended the model to incorporate multiple GWAS for 

genetically correlated diseases

Hu et al. 2017
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Summary

Annotation = External Information

• Conservation

• Epigenetic data

• Transcriptomic data

• Functional prediction scores (supervised / unsupervised)

• Quantitative trait loci (eQTL, sQTL, pQTL)

• Allele frequency (ExAC, gnomad)

• LD (1000 Genomes)

• Additional GWAS

• Chromatin interaction
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Summary

Applications

• Fine-mapping (GenoWAP)

• Partition heritability and infer relevant tissue (LDSC+GenoSkyline)

• Partition genetic covariance (GNOVA)

• Gene-level association test (new method coming soon)

• Risk prediction (AnnoPred, PleioPred)



THANK YOU


