Integrative functional annotations of the human genome and their applications in GWAS analysis

Qiongshi Lu University of Wisconsin-Madison

Friday Harbor, 09/08/2017

Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

Background

Despite the advancements, GWAS has its limitations

It is difficult to identify all associations

• Polygenicity and low effect size

It remains challenging to interpret the findings

- 88% of significant associations are in the non-coding genome
- LD makes it challenging to identify biologically functional SNPs

To solve these problems, we need better **functional annotations** for the (non-coding) human genome.

Only ~2% of the human genome encodes proteins. However, the rest 98% may be critically involved in a variety of regulatory machinery.

ACGTTGCAAATTCAGTCGGTACTTTAACGTACGTACGGTACTGGTATTGTCAGGTTGTTCAACT CATGACACTEGEAGATAGACAGATTGTCGTGTTATVTGACTTGGAAD GTAGGCCCTTG TGGCAGTCCCTACGTACCGTCGGTACTGGTAACGTGAGGTCAGGTTGTTCAACTCATC GAAATATCTCGGATAATTAACAGATACACACCCTTAGACCATTTAATCCCTGGGAAAGGC CGTACCAGTCTTTCCAGGCACTGACAGATAGACAGATTGTCGTGTTATVTGACTTGGAAC GGCCCTTGAATCTTGGCAGTCGTAACGTACGTACGGTACTGGTAACGTGAGGTCAGGT GGTCAGGTTGTTCAACTCGATGACTAGAATATATCCAGGAAAAATCCCTGGGAAAAATTG TACGTGTCGTAACGTACGTACGGTACTGGTAACGTGAGCCAGGAAAATCCCTGGGAA GTAACGTTGCAAATTCAGTCGGTACGTTTCCAGGCTACACATTGTCGTGTTATVTGACTTGGAA CTGTAGCURLYHAIRGCCCTTGAATCTTGGCAGTCGTAACGTACGTACTGAGGTCAGG AACTCATCCAGGAATGGGCCCTACGTACCGTAACGTTGCAAATTCAGTCGGTACGTT CTACACACACACTGACAGATAGACAGATTGTCGTGTTATVTGACTTGGAACTGTAGG ATCTTGGCAGTCGTAACGTACGTACGGTACTGGTAACGTGAGGTCAGGT TCTACTAGAAGAAAAATTGGGCCCTACGTACCGTAACGTTGCAAATTCAGTCGG GGCTACACACACACTGACAGATAGACAGATTGTCGTGTTATVT GAATCTTGGCAGTCGTAACGTACGTACGGTACTGHEARTDISECG' ATTGGGCCCTACGTACCGTAACGTTGCAAATT ATTGTCGTGTTATVTGAC CASTOSTCASGTTGTTCAACTCGATGACTAGAATATATCCAGGAAAATCCC related to neurological function? enhancer?

Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools
- **3. Applications of functional annotations**
- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

- Synonymous variant
- Missense variant

					Secon	d Letter	ě			2.9	
		U			C		A		3		_
1st letter	U		Phe	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	UCAG	
	c	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gin	CGU CGC CGA CGG	Arg	UCAG	3n
	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	UCAG	let
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	ciy	DCAG	

U.S. Relianal Library of Medicine

• Loss-of-function variant

Computation methods (supervised)

We understand the functional mechanism of genes. Training data are also available (OMIM, ClinVar)

- SIFT
- PolyPhen2
- MetaSVM

Maine Coon ? Russian Blue

Application – de novo mutation analysis

Home News Journals Topics Careers Science Science Advances Science Immunology Science Robotics Science Signaling Science Translational Medicine

SHARE REPORT

8

0

De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies

Jason Homsy^{1,2,*}, Samir Zaidi^{3,*}, Yufeng Shen^{4,*}, James S. Ware^{1,5,6,*}, Kaitlin E. Samocha^{1,7}, Konrad J. Karczewski^{1,7}, Steven R. DePalma^{1,5}, David McKean¹, Hiroko Wakimoto¹, Josh Gorham¹, Sheng Chih Jin³, John Deanfield⁹, Alessandro Giardini⁹, George A. Porter Jr.¹⁰, Richard Kim¹¹, Kaya Bilguvar^{3,12}, Francesc López-Giráldez¹², Irina Tikhonova¹², Shrikant Mane¹², Angela Romano-Adesman¹³, Hongjian Qi^{4,14}, Badri Vardarajan¹⁵, Lijiang Ma²⁶, Mark Daly^{1,7}, Amy E. Roberts¹⁷, Mark W. Russell¹³, Seema Mital¹⁹, Jane W. Newburger³⁰, J. William Gaynor³⁰, Roger E. Breitbart³⁰, Ivan Iossifov³², Michael Ronemus²², Stephan J. Sanders²³, Jonathan R. Kaltman²⁴, Jonathan G. Seidman¹, Martina Brueckner^{3,4}, Bruce D. Gelb^{25,1}, Elizabeth Goldmuntz^{26,27,‡}, Richard P. Lifton^{3,28,1,‡}, Christine E. Seidman^{1,8,25,1,‡}, Wendy K. Chung^{30,1,‡}

Application – de novo mutation analysis

			Ci	ises, N =	1213	Controls, N = 900						
	Observed		Expected		Enrichment	P	Observed		Expected		Enrichment	Р
	n	Rate	n	Rate			n	Rate	n	Rate		
All genes												
Total	1273	1.05	1312.7	1.08	1.0	0.87	925	1.03	979.7	1.09	0.9	0.96
Synonymous	277	0.23	371.4	0.31	0.7	1	229	0.25	277.4	0.31	0.8	1
Missense	846	0.70	824.9	0.68	1.0	0.24	614	0.68	615.6	0.68	1.0	0.53
D-Mis	212	0.17	133.1	0.11	1.6	1.8×10^{-10}	119	0.13	99.3	0.11	1.2	0.03
LoF	150	0.12	116.5	0.10	1.3	0.0016	82	0.09	86.7	0.10	0.9	0.71
Damaging	362	0.30	249.5	0.21	1.4	1.5×10^{-11}	201	0.22	186.0	0.21	11	0.14
HHE genes												
Total	448	0.37	372.4	0.31	1.2	7.8 × 10 ⁻⁰⁵	271	0.30	277.7	0.31	1.0	0.66
Synonymous	81	0.07	103.5	0.09	0.8	0.99	80	0.09	77.3	0.09	1.0	0.39
Missense	288	0.24	234.3	0.19	12	0.00038	163	0.18	174.7	0.19	0.9	0.82
D-Mis	99	0.08	40.6	0.03	2.4	7.7 × 10 ⁻¹⁵	37	0.04	30.3	0.03	1.2	0.13
LoF	79	0.07	34.5	0.03	2.3	6.2 × 10 ⁻¹¹	28	0.03	25.7	0.03	11	0.35
Damaging	178	0.15	75.1	0.06	2.4	5.1 × 10 ⁻²⁴	65	0.07	55.9	0.06	1.2	0.13
LHE genes												
Total	825	0.68	940.3	0.78	0.9	1	654	0.73	702.1	0.78	0.9	0.97
Synonymous	196	0.16	267.8	0.22	0.7	1	149	0.17	200.1	0.22	0.7	1
Missense	558	0.46	590.5	0.49	0.9	0.91	451	0.50	440.9	0.49	1.0	0.32
D-Mis	113	0.09	92.4	0.08	1.2	0.021	82	0.09	69.0	0.08	1.2	0.069
LoF	71	0.06	82.0	0.07	0.9	0.9	54	0.06	61.1	0.07	0.9	0.83
Damaging	184	0.15	174.4	0.14	1.1	0.24	136	0.15	130.1	0.14	11	0.31

UCSC genome browser

Transcriptomic information

- ncRNA
- eQTL

Computational methods based on supervised learning

- Labeled data + Predictive features + Algorithm = Score
- CADD
- GWAVA

Maine Coon ? Russian Blue

Computational methods based on unsupervised learning

- Unlabeled data + Predictive features + Algorithm = Score
- GenoCanyon, GenoSkyline, GenoSkyline-Plus
- EIGEN
- ChromHMM

Other useful tools

UCSC genome browser

Annovar – annotate your variant list using many functional annotations

												-					
Gene.ref(GeneDeta	ExonicFur	AAChange	pULrefGer	pRec.refG	pNulLreft	Gene_full	Function_	description.ref6	Disease_	descriptio	Tissue_specificity/Uni	Expression(ege	Expression(GNF/Atla	P(HI).refGF	P(nec).refr	RVI5.refG
5935	NM_00510	1		0.009848	0.600249	0.389903	15615 ubi	FUNCTION	E Ubiquitin-like	DISEASE	Immunod	TISSUE SPECIFICITY D	é.		0.1	0.22633	-0.11561
ATAD3C	NM_00500			4.905-05	0.867306	0.132645	ATPase fa			-		-			0.16989		2.888598
NPHP4	NM_00525			1.296-17	0.420065	0.579935	nephrono	PUNCTION	E Involved in the	DISEASE	Note-Oil	TISSUE SPECIFICITY: EX	6		0.12343	0.16808	0.569383
00R2				0.990992	0.009008	3.796-09	discoldin-	FUNCTION	i: Tyrosine kinas	OISEASE:	Spondylo	TISSUE SPECIFICITY: D	é.	-	0.85011	0.1349	-0.77519
ONASE28				3.796-14	0.003092	0.996908	decsyribs	FUNCTION	E Hydrolyzes DN	6		TISSUE SPECIFICITY: H	(.		0.20864	0.10705	0.88376
PRAMEFIE	dist-1156									-		-			-		
UBIAD1;0	dist-4396														-		
UOC10012	dist+8725									-		-			-		
L234		nonsynon	IL23R/NM	0.006485	0.98949	0.004014	interleuki	PUNCTION	E Associates with	DISEASE:	Inflamma	TISSUE SPECIFICITY: E	6		0.11254	0.33307	0.795569
ATG26L1		nonsynor	ATG16L1.7	0.999737	0.000263	1.676-13	autophag	PUNCTION	i: Plays an essen	DISEASE:	inflamma	-	myocardium; sr	dorsal root ganglion;	0.3463	0.106465	0.15076

- 1. Background
- 2. Introduction to (narrow-sense) functional annotations
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

How to identify functional SNP at a GWAS locus?

- PAINTOR
- FGWAS
- GenoWAP

Goal:

Functional SNP fine-mapping

• GenoWAP

Functional SNP fine-mapping

• GenoWAP

- 1. Background
- 2. Introduction to (narrow-sense) functional annotations
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

LD score regression

- Estimate (partition) heritability using GWAS summary statistics
- We expect to see stronger associations in regions with high LD

• It can be shown that this relationship is linear!

Finucane et al. 2015

Bulik-Sullivan et al. 2014

LD score regression

- The model can be extended to partition heritability by functional annotation
- This makes it possible to calculate enrichment

% heritability explained

Genetic covariance quantifies shared genetics among complex traits

25

GNOVA, a principled framework to perform annotation-stratified genetic covariance estimation

26

We dissected the genetic covariance between late-onset Alzheimer's disease (LOAD) and amyotrophic lateral sclerosis (ALS)

LOAD: IGAP phase-I (17,008 cases, 37,154 controls)

ALS: MinE project (12,577 cases, 23,475 controls)

Annotation	Category	Covariance	P-value
Non stratified	GNOVA	0.016 (0.004)	2.0×10 ⁻⁴
NUII-Silaliileu	LDSC	0.012 (0.007)	0.075
ConoConvon	functional	0.016 (0.004)	8.2×10⁻⁵
Genocariyon	non-functional	0.003 (0.004)	0.377
	Q1	-0.001 (0.003)	0.842
	Q2	0.003 (0.004)	0.361
IVIAF	Q3	0.004 (0.004)	0.327
	Q4	0.008 (0.003)	0.005

Genetic covariance between LOAD and ALS is proportional to the size of the functional genome on each chromosome. This suggests a **polygenic** genetic covariance structure.

- 1. Background
- 2. Introduction to (narrow-sense) functional annotations
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

Gene-level analysis

PrediXcan and TWAS

- Impute gene expression using genotype information
- Perform association test using imputed expression

30

Gamezon et al. 2015

Gene-level analysis

PrediXcan and TWAS

Idea is similar to colocalization

Often identify signals in irrelevant tissues

PrediXcan and TWAS

Need a metric to summarize information across all tissues

This is very similar to "burden test for common SNPs"

- 1. Background
- 2. Introduction to (narrow-sense) functional annotations
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

AnnoPred

Remember we can connect disease with tissues?

 $Enrichment = \frac{\% \text{ heritability explained}}{\% \text{ genome covered}}$ Such connections can help estimate SNPs' effect sizes $\mathbb{E}(\beta \mid \hat{\beta}, \hat{D})$

AnnoPred

SNPs with high prior show stronger associations and more consistent effect directions in validation cohorts

AnnoPred

We achieved higher risk prediction accuracy across five complex diseases

 $\hat{y} = X \mathbb{E}(\beta | \hat{\beta}, \hat{D})$

Table 2. CORs of different methods.	The highest CORs	s are highlighted in boldface.
-------------------------------------	------------------	--------------------------------

Disease/Trait	PRSsig	PRSall	PRS _{P+T}	LDpred	AnnoPred
Crohn's Disease	0.27	0.229	0.32	0.325	0.343
Breast Cancer	0.084	0.055	0.12	0.122	0.137
Rheumatoid Arthritis	0.204	0.114	0.248	0.282	0.287
Type-II Diabetes	0.165	0.156	0.204	0.202	0.22
Celiac Disease	0.11	0.136	0.18	0.197	0.213

PleioPred

We have further extended the model to incorporate multiple GWAS for genetically correlated diseases

Summary

Annotation = External Information

- Conservation
- Epigenetic data
- Transcriptomic data
- Functional prediction scores (supervised / unsupervised)
- Quantitative trait loci (eQTL, sQTL, pQTL)
- Allele frequency (ExAC, gnomad)
- LD (1000 Genomes)
- Additional GWAS
- Chromatin interaction

Summary

Applications

- Fine-mapping (GenoWAP)
- Partition heritability and infer relevant tissue (LDSC+GenoSkyline)
- Partition genetic covariance (GNOVA)
- Gene-level association test (new method coming soon)
- Risk prediction (AnnoPred, PleioPred)

THANK YOU

