Integrative functional annotations of the human genome and their applications in GWAS analysis

Qiongshi Lu University of Wisconsin-Madison

Friday Harbor, 09/08/2017

Outline

1. Background

2. Introduction to (narrow-sense) functional annotations

- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

Despite the advancements, GWAS has its limitations

It is difficult to identify all associations

Polygenicity and low effect size

It remains challenging to interpret the findings

- 88% of significant associations are in the non-coding genome
- LD makes it challenging to identify biologically functional SNPs

To solve these problems, we need better **functional annotations** for the (non-coding) human genome.

Only ~2% of the human genome encodes proteins. However, the rest 98% may be critically involved in a variety of regulatory machinery.

1. Background

2. Introduction to (narrow-sense) functional annotations

- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools
- **3. Applications of functional annotations**
- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

- Synonymous variant
- Missense variant

U.S. National Library of Medicine

• Loss-of-function variant

Computation methods (supervised)

We understand the functional mechanism of genes. Training data are also available (OMIM, ClinVar)

- **SIFT**
- PolyPhen2
- MetaSVM

8 **Russian Blue Maine Coon ?**

Application – de novo mutation analysis

Science

SHARE REPORT

 $8¹$

 \circ

De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies

Jason Homsy^{1,2,*}, Samir Zaidi^{3,*}, Yufeng Shen^{4,*}, James S. Ware^{1,5,6}*, Kaitlin E. Samocha^{1,7}, Konrad J. Karczewski^{1,7}, Steven R. DePalma^{1,5}, David McKean¹, Hiroko Wakimoto¹, Josh Gorham³, Sheng Chih Jin³, John Deanfield⁰, Alessandro Giardini⁹, George A. Porter Jr.¹⁰, Richard Kim¹¹, Kaya Bilguvar^{3,12}, Francesc López-Giráldez¹², Irina Tikhonova¹², Shrikant Mane¹², Angela Romano-Adesman¹³, Hongjian Qi^{4,14}, Badri Vardarajan¹⁵, Lijiang Ma¹⁶, Mark Daly^{1,7}, Amy E. Roberts¹⁷, Mark W. Russell¹³, Seema Mital¹⁹, Jane W. Newburger²⁰, J. William Gaynor²³, Roger E. Breitbart²⁰, Ivan lossifov²², Michael Ronemus²², Stephan J. Sanders²³, Jonathan R. Kaltman²⁶, Jonathan G. Seidman¹, Martina Brueckner^{3,1}, Bruce D. Gelb^{25.1}, Elizabeth Goldmuntz^{26.27.1}, Richard P. Lifton^{3.28.1}¹, Christine E. Seidman^{1.8.29.11}, Wendy K. Chung^{30.1.1}

Application – de novo mutation analysis

UCSC genome browser

Transcriptomic information

- ncRNA
- eQTL

Computational methods based on supervised learning

- **Labeled data** + Predictive features + Algorithm = Score
- CADD
- GWAVA

14 **Russian Blue Maine Coon ?**

Computational methods based on unsupervised learning

- **Unlabeled data** + Predictive features + Algorithm = Score
- GenoCanyon, GenoSkyline, GenoSkyline-Plus
- EIGEN
- ChromHMM

Other useful tools

UCSC genome browser

Annovar – annotate your variant list using many functional annotations

- **1. Background**
- **2. Introduction to (narrow-sense) functional annotations**
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

How to identify functional SNP at a GWAS locus?

- **PAINTOR** \bullet
- **FGWAS** \bullet
- **GenoWAP** \bullet

Goal:

• GenoWAP

Functional SNP fine-mapping

GenoWAP \bullet

- **1. Background**
- **2. Introduction to (narrow-sense) functional annotations**
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

LD score regression

- Estimate (partition) heritability using GWAS summary statistics
- **We expect to see stronger associations in regions with high LD**

• It can be shown that this relationship is linear!

Finucane et al. 2015

Bulik-Sullivan et al. 2014

LD score regression

- The model can be extended to partition heritability by **functional annotation**
- This makes it possible to calculate enrichment

% heritability explained

-
- **Genetic covariance** quantifies shared genetics among complex traits

• **GNOVA**, a principled framework to perform annotation-stratified genetic covariance estimation

We dissected the genetic covariance between late-onset Alzheimer's disease (LOAD) and amyotrophic lateral sclerosis (ALS)

LOAD: IGAP phase-I (17,008 cases, 37,154 controls)

ALS: MinE project (12,577 cases, 23,475 controls)

Genetic covariance between LOAD and ALS is proportional to the size of the functional genome on each chromosome. This suggests a **polygenic** genetic covariance structure.

- **1. Background**
- **2. Introduction to (narrow-sense) functional annotations**
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

PrediXcan and TWAS

- Impute gene expression using genotype information
- Perform association test using imputed expression

Gene-level analysis

PrediXcan and TWAS

Idea is similar to colocalization

Often identify signals in irrelevant tissues

PrediXcan and TWAS

Need a metric to summarize information across all tissues

This is very similar to "**burden test for common SNPs**"

- **1. Background**
- **2. Introduction to (narrow-sense) functional annotations**
- Functional annotation in protein-coding genes
- Functional annotation in non-coding regions
- Other useful tools

3. Applications of functional annotations

- Functional SNP fine-mapping
- Partitioning heritability and genetic covariance
- Gene-level analysis
- Effect size estimation and risk prediction

AnnoPred

Remember we can connect disease with tissues?

Such connections can help estimate SNPs' effect sizes $Enrichment = -$ % heritability explained $\frac{6}{9}$ genome covered $\mathbb{E}(\beta | \hat{\beta}, \widehat{D})$

AnnoPred

SNPs with high prior show stronger associations and more consistent effect directions in validation cohorts

AnnoPred

We achieved higher risk prediction accuracy across five complex diseases

 $\hat{y} = X \mathbb{E}(\beta | \hat{\beta}, \hat{D})$

PleioPred

We have further extended the model to incorporate multiple GWAS for genetically correlated diseases

Summary

Annotation = External Information

- Conservation
- Epigenetic data
- Transcriptomic data
- Functional prediction scores (supervised / unsupervised)
- Quantitative trait loci (eQTL, sQTL, pQTL)
- Allele frequency (ExAC, gnomad)
- LD (1000 Genomes)
- Additional GWAS
- Chromatin interaction

Summary

Applications

- Fine-mapping (GenoWAP)
- Partition heritability and infer relevant tissue (LDSC+GenoSkyline)
- Partition genetic covariance (GNOVA)
- Gene-level association test (new method coming soon)
- Risk prediction (AnnoPred, PleioPred)

THANK YOU

