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Introduction

To date, tens of millions of
iIndividuals have been
included in GWAS and
sequencing association
studies for the mapping of
complex traifs.

The vast majority of these
studies, however, have
been conducted in
populations of European
ancestry

SAMPLING BIAS

Most genome-wide association studses have
been of people of European descent,
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Bustamante et al. (Nature, 20%l)



Current State of Affairs
PERSISTENT BIAS

Over the past seven years, the proportion of participants in genome-wide
association studies (GWAS) that are of Asian ancestry has increased.
Groups of other ancestries continue to be very poorly represented.

2009 2016

373 studies 2,511 studies
1.7 million samples 35 million samples
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Popejoy and Fullerton (Nature, 2016)



Over-representation of European

Populations in Genetic Studies
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Need for Genetic Studies
in Diverse Populations

Medical genomics has focused almost entirely on those of
European descent.

Other race and ethnic groups must be studied to ensure that
more people benefit

Bustamante et al. (Nature, 2011)



Health Disparities: Personalized

drug
treatment
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Example: Asthma Affects
~334M Globally

Prevalence Mortality
37%

4.4
3.2
12%  13%
1.2

Mexican Caucasian African Puerto Mexican Caucasian African Puerto
American American Rican American American Rican
NHLBI Study of Latinos (SOL)

Barr et. ai.,, AJRCCM 2016 Akinbami L. CDC/NCHS



Example: Asthma Health
Disparities

These disparities extend 1o asthma mortality, which
Is 3- to 4-fold higher in Puerto Ricans and African
Americans compared to Whites and Mexicans.

Albuterol is the most commonly prescribed asthma
medication in the world.

Dr. Esteban Burchard (UCSF) and colleagues
leading Genetics of Asthma in Latino Americans
(GALA) and Study of African Americans, Asthma,
Genes, & Environments (SAGE)

- Marked differences in drug response to Albuterol
between racial and ethnic groups, which
contribute to health disparities in asthma
morbidity and mortality.



GALA: Children with Moderate-to-Severe
Asthma

Good drug response
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Salmeterol iny Black Box
Warning

« Salmeterol is used in moderate-to-severe persistent
asthma following previous treatment with a short-
acting B, adrenoreceptor agonist(SABA) such
as salbutamol (albuterol).

e However, African Americans, beware!

“In African Americans, asthma-related deaths occurred
at a higher rate in patients treated with Salmeterol than
those treated with placebo (..relative risk: 7.26..)...”
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“And that’s why we're here today.
Because something called Precision Medicine ... gives us one of
the greatest opportunities for new medical breakthroughs that
we have ever seen.”

State of the Union Address
January 20, 2015



Precision Medicine
Initiative

* NIH launched the Precision
Medicine Inifiative (PMI) in 2015

o PMI Cohort Program will build a large research
cohort of one million or more Americans

o Goalis to support and advance the targeted
prevention and treatment strategies that take an
individual's unigue characteristics info account,
including individual genome sequences,
environmental factors and lifestyles.



TOPMed WGS Project

NIH/NHLBI Trans-Omics for Precision Medicine
(TOPMed) Program is a component of the PMI

TOPMed Whole-genome-sequence (WGS) project
currently generating deep WGS data for over 120,000
individuals

More than 30 cohorts studies with well-defined
phenotypes and existing clinical outcomes data, many
with cognitive function measures

Primary aims is to identify genetic variants for
Increased or decreased risk of disease, as well as those
that help define disease subtypes.

To date, over 70,000 whole genome seqguences have
been completed

University of Washington Genetic Analysis Center is the
Data Coordinating Center for the TOPMed WGS
Project



Multi-ethnic TOPMed Cohorts

« Concerted effort to be reflective of the diverse
ancestries of the U.S. population.

TOPMED COHORTS: PHASE 1

Pacific Islander
Asian 20,
8%

Hispanic/Latino
10%

European
50%

African
30%



Genetics Studies in Diverse Populations:

Opportunities and Challenges

« Opportunities:

= |dentification of novel genetic variants underlying
phenotypic diversity between populations.

= Potential to provide new insights for health disparities of
minority populations for many complex diseases
» Challenges for complex trait mapping:
= Heterogeneous genetic background
= Confounding due to ancesiry/population structure
= Population structure inference and correction
= Familial structure and/or cryptic relatedness



Case-Control Association Testing

» Below is a simple example to illustrate
association testing at a genetic marker with
two allelic types labeled A and a

» Statistics for identifying an association could

either compare allele or genotype
frequencies between the cases controls

Cases Controls




Case-Control Association
Testing

The observations in genetic association studies can
be confounded by population structure
o Population structure: the presence of subgroups in the
population with ancestry differences
Neglecting or not accounting for ancestry
differences among sample individuals can lead to
false positives or spurious associations!

This is a serious concern for all genetic association
studies



Confounding due to
Ancestry Differences

* |n statistics, a confounding variable is an
extraneous variable that correlates with both the
outcome variable and the predictor variable of

Interest.

association of inerest
Genotype P Trait

assodation association



Confounding due to
Ancestry Differences

» Ethnic groups (and subgroups) often share distinct
genetic variation, dietary habits and ofher lifestyle
characteristics that leads to many traits of interest
being correlated with ancestry and/or ethnicity.

association of inerest
Genotype P Trait

assodation association



Spurious Associations: Case-
Control Studies

o Case/Control association test
» Comparison of allele frequency between cases and controls.

@ Consider a sample from 2 populations:
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» Red population overrepresented among cases in the sample.
» Genetic markers that are not influencing the disease but with
significant differences in allele frequencies between the populations
> spurious association between disease and genetic marker



Spurious Associations: Quantitative
Trait Studies

o Quantitative trait association test
» Test for association between genotype and trait value

@ Consider sampling from 2 populations:

Mistogram of Trait Values

» Blue population has higher trait values.
» Different allele frequency in each population
== spurious association between trait and genetic marker if one
o population is overrepresented in the sample



TOPMed BMI: Self-reported Race/Ethnicity

BMI Boxplots by Self-Reported Race BMI Densities
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Background: Population Structure

 Humans originally spread across the world many
thousand years ago out of Africa

« Migration and genetic drift led to geneftic diversity
between isolated groups.
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Population Structure
Inference

Inference on genetic ancestry differences among
individuals from different populations, or population
structure, has been moftivated by a variety of
applications:

o population genetics

o genetic association studies
o personalized medicine

o forensics

Advancements in array-based genotyping and
sequencing technologies have largely facilitated the
investigation of genetic diversity at remarkably high
levels of detall

A variety of methods have been proposed for the
identification of genetic ancestry differences among
individuals in a sample using high-density genome-
screen data.



Inferring Population
Structure with PCA

Principal Components Analysis (PCA) is the most
widely used approach for identifying and adjusting
for ancestry difference among sample individuals

PCA applied to genotype data can be used to
calculate principal components (PCs) that explain
differences among the sample individuals in the
genetic data

The top PCs are viewed as continuous axes of
variation that reflect genetic variation due to
ancestry in the sample.

Individuals with “similar” values for a partficular top
principal component are expected to have
“similar” ancestry for that axes.



PCA for Population Structure
Inference

« PCAis an unsupervised learning tool for dimension
reduction in multivariate analysis.

« Widely used in genetics community to infer
population structure from genetic data.

o Premise is that top principal components (PCs) will reflect population
structure in the sample.

« Orthogonal linear fransformation to a new
coordinate system

o PCA sequentially identifies linear combinations of genetic markers
that explain the greatest proportion of variability in the data

o these define the axes (PCs) of the new coordinate system
o each individual has a value along each PC

» EIGENSOFT (Price et al., 2006) is @
popular mplementation of PCA



Data Structure for PCA

Sample of N individuals, indexed by i = 1,2,...,N.

Genome screen data on M genetic autosomal markers,
indexed by m =1,2,..., M.

At each marker, for each individual, we have a genotype value,
Gim-

Here we consider bi-allelic markers, so g;,, takes values 0, 1,
or 2, corresponding to the number of reference alleles.

We center and standardize these genotype values:
Gim — zﬁm
\/2ﬁm(1 o ﬁm)

where p,,, is an estimate of the reference allele frequency for
marker m.

Zim



Genetic Correlation Estimation

» Create an N x M matrix, Z, of centered and standardized
genotype values, and with Z we can obtain an N x N genetic
relatedness matrix (GRM) for all possible pairs in the sample:
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» The (Z,j)th element of this matrix is

Z (gzm - 2Pm (ng - 2pm)
2pm (1 — Pm)

?

where \Ili,- can be viewed as an estimate of the genome-wide
average genetic correlation between individuals 7 and j.

Individuals from the same ancestral population
are expected to have genotypic values that are
more correlated than individuals from different
.ancestral populations. y



Principal Components Analysis

» PCA is performed by obtain the eigen-decomposition of 0
that is, we find eigenvectors and eigenvalues such that

¥ = VTLV where
» V=[V,Va,...,Vn]isa N x N matrix consisting of N
eigenvectors, each of length N

» L is a diagonal matrix of N eigenvalues,
(A1 > A2 > ... > An), that are in decreasing order, i.e.,

M 0 ... 0
0 Mo :




Principal Components Analysis

» The d** principal component (eigenvector) corresponds to
eigenvalue A4, where )\, is proportional to the percentage of
variability in the genome-screen data that is explained by V.

» The top principal components are viewed as continuous axes
of variation that reflect genetic variation that best explain
genotypic variability amongst the N sample individuals.

» Individuals with "similar” values for a particular top principal
component are expected to have "similar’ ancestry for that
axes.

» As a result, eigenvectors (PCs) are often used as surrogates
for ancestry (or population structure).

° @30



PCA of Europeans

* |n a very influential paper for modern genetic
studies, an application of PCA to genetic data from
European samples, Novembre et al. (Nature, 2008)
llustrated that among Europeans for whom all four
grandparents originated in the same country, the
first two principal components computed using
200,000 SNPs could map their country of origin quite
accurately in a plane



PCA of Europeans
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Novembre et al. (Nature, 2008)



PCA in Finland

* here can be population structure in all populations,
even those that appear to be relatively
“homogenous”

 An application of principal components analysis o
genetic data from Finland samples (Sabatti et al.,
2009) identified population structure that
corresponded very well to geographic regions in
this country.



PCA in Finland

Subjects with both parents

| South Oulu
O Central Lapland M North Oulu
-20 4 B East Lapland m Kanuuy
-40 20 0 20
First coortinate MDS

Sabatti et al. (Nature Genetics, 2009)



Correcting for Population Structure with PCA

» Price et al. (2006) proposed corrected for structure in genetic
association studies by applying PCA to W.

» They developed a method called EIGENSTRAT for
association testing in structured populations where the top
principal components (highest eigenvalues)

» EIGENSTRAT essentially uses the top principal components
from the PCA as covariates in a multi-linear regression model
to correct for sample structure.

Y = Bo+ 51X + BoPCL + B3PC + B4aPC3 + - - + €

> H02ﬁ1=0VS. H,:,BI#O

° @35



Caution: Familial Relatedness
Confounds standard PCA

« Distinguishing familial relatedness from ancestry using
genotype data in diverse populations is difficult, as
both manifest as genetic similarity through the sharing

of alleles.

Ancestral Population

to C.o.’o.’.’:oao.b

Subpop K

Current Population

Conomos et al. (AJHG, 2016) o



PCA in Related Samples

Genetic
Epidemiology

OFFICIAL JOURNAL
INTERNATIONAL GENETIC

Robust Inference of Population Structure for Ancestry e‘.‘.’.‘."ﬁt‘.'.?.?f: oL
Prediction and Correction of Stratification in the
Presence of Relatedness

Matthew P. Conomos,’ Michael B, Miller,? and Timothy A, Thornton'*

Developed the PC-AIR method for performing @
Principal Components Analysis in Related samples.



Admixed Populations

A number of recent large-scale genetic studies
Include sampled individuals from admixed

populations:

o populations characterized by ancestry derived from two or more
ancestral populations that were reproductively isolated.

Admixed populations have arisen in the past
several hundred years as a consequence of
historical events such as the transatlantic slave
trade, the colonization of the Americas and other
long-distance migrations.

Examples of admixed populations include

o African Americans and Hispanics in the U.S
o Latinos from throughout Latin America

o Uyghur population of Central Asia

o Cape Verdeans

o South African "Coloured" population



Ancestry Admixture

A m N .W
p:;e; e Ancestral
Pop. B

MR o,
e
 The chromosomes of an admixed individual represent

a mosaic of chromosomal blocks from the ancestral
populations..




Recently Admixed
Populations

« There can be substantial genetic heterogeneity among
iIndividuals in admixed populations

« Admixed populations are ancestrally admixed and thus
have population structure.

Statistical method for estimating admixture proportions
from genetic data



Supervised Learning of
Ancestry Admixture

» Methods, such as ADMIXTURE (Alexander et al., 2009),
have recently been developed for supervised learning of
ancestry proportions for an admixed individuals using

high-density SNP data.

» Most use either a hidden Markov model (HMM) or an
Expectation-Maximization (EM) algorithm to infer
genome-wide or global ancestry

» Other methods, such as RFMix (Maples et al., 2013) have
been implemented to infer local ancestry of admixed
individuals, i.e., ancestry at specific locations on the genome.



Admixture Inference

» Example: We are interested in identifying the ancestry
proportions for an admixed individual

» Suppose the observed sequence on a chromosome for an
admixed individual is:

... TATACGTGCACCTGGATTACAGAT TACAGATTACAGATTACATTGCATCGATCGAA. ..

» Assume that we have a suitable reference panel with diverse
ancestries, and a similar sequence is observed in samples from
one of the “homogenous” reference populations:

... TGATCCTGAACCTAGCATTACAGATTACAGATTACAGATTACAATGCTTCGATGGAC...

.. .AGATCCTGAACCTAGATTACAGATTACAGATTACAGATACCAATGCTTCGATGGAC...

++ . CGATCCTGAACCTAGATTACAGATTACAGATTTGCGTATACAATGCTTCGATGGAC. ..

Can infer the likelihood of the observed sequence in
the admixed individuals being derived from each of
the reference population samples. This can be
Jperformed across the genome. 4



Admixture: HapMap ASW and MXL

» Genome-screen data on 150,872 autosomal SNPs was used to
estimate ancestry

» Estimated genome-wide ancestry proportions of every
individual using the ADMIXTURE (Alexander et al., 2009)
software

» A supervised analysis was conducted using genotype data
from the following reference population samples for three
"ancestral” populations

» HapMap YRI for West African ancestry
» HapMap CEU samples for northern and western European

ancestry
» HGDP Native American samples for Native American ancestry.



Admixture: HapMap ASW and MXL

A Supervised ADMIXTURE Estimated Ancestry for HapMap MXL + ASW
o
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Admixture: HapMap ASW and MXL

Table: Average Estimated Ancestry Proportions for HapMap African
Americans and Mexican Americans

Estimated Ancestry Proportions (SD)
Population European African Native American
MXL 49.9% (14.8%)  6%(1.8%) 44.1% (14.8%)
ASW 20.5% (7.9%) 77.5% (8.4%)  1.9% (3.5%)
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Unexpected Relatedness in HapMap MXL

ARTICLE

Estimating Kinship in Admixed Populations

Timothy Thornton,'* Hua Tang,? Thomas J. Hoffmann,*# Heather M. Ochs-Balcom,® Bette J. Caan,®
and Neil Risch3.46.*

O
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Example: HCHS/SOL

The Hispanic Community Heath Study / Study of
Latinos (HCHS/Sol) is the largest genetic study of
Hispanics/Latinos

Goal is to identify genetic risk factors for a variety of
health conditions: heart, lung and blood disorders,
kidney and liver function, diabetes, cognitiive
function, dental conditions, hearing disorders, etc.

13,065 self-identified Hispanic or Latino men and
women, aged 18-74 years, consented to have DNA
extracted for genetfic studies.



PCA in HCHS/SOL
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Genetic Diversity in HCHS/SOL

ARTICLE

Genetic Diversity and Association Studies
in US Hispanic/Latino Populations: Applications
in the Hispanic Community Health Study/Study of Latinos

Matthew P. Conomos,''%* Cecelia A, Laurie,’'* Adrienne M. Stilp,'-'* Stephanie M, Gogarten,'.'4
Caitlin P. McHugh,' Sarah C. Nelson,' Tamar Sofer,’ Lindsay Fernindez-Rhodes,” Anne E. Justice,”
Mariaelisa Graff,” Kristin L. Young,” Amanda A. Seyerle,” Christy L. Avery,” Kent D. Taylor,*

Jerome 1. Rotter,” Gregory A. Talavera,* Martha L. Daviglus,® Sylvia Wassertheil-Smoller,®

Neil Schneiderman,” Gerardo Heiss,” Robert C. Kaplan,® Nora Franceschini,” Alex P. Reiner*®

John R. Shaffer,” R. Graham Barr,'” Kathleen F. Kerr,! Sharon R. Browning,' Brian L. Browning,''
Bruce S. Weir," M. Larissa Avilés-Santa,'? George J. Papanicolaou,’? Thomas Lumley,'' Adam A. Szpiro,’
Kari E. North,” Ken Rice,’ Timothy A. Thornton,’ and Cathy C. Laurie’*
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PCA in HCHS/SOL
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Genetic differentiation among individuals is associated with the
geography of their countries of grandparental origin.

Plots of PCs from analyses using individuals for whom all four
grandparents were born in a specific country in Central or SouTh
America show geographic structure



Applications and Novel Discoveries in

Hispanic/Latino Populations

Genetic Diversity and Association Studies
in US Hispanic/Latino Populations: Applications
in the Hispanic Community Health Study/Study of Latinos

Matthew P. Conomos,''4* Cecelia A, Laurie,’'% Adrienne M. Stilp,'-'* Stephanie M, Gogarten,'.'4
Caitlin P. McHugh,' Sarah C. Nelson,' Tamar Sofer,’ Lindsay Fernindez-Rhodes,” Anne E. Justice,?
Mariaelisa Graff,? Kristin L. Young,” Amanda A. Seyerle,” Christy L. Avery,” Kent D. Taylor,*
Jerome 1. Rotter,’ Gregory A. Talavera,* Martha L. Daviglus,® Sylvia Wassertheil-Smoller,®

Neil Schneiderman,” Gerardo Heiss,” Robert C. Kaplan,® Nora Franceschini,? Alex P. Reiner,®

John R. Shaffer,” R. Graham Barr,'? Kathleen F. Kerr,! Sharon R. Browning,' Bran L. Browning,'’

ARTICLE o
ORIGINAL ARTIC

Genetic Associations with Obstructive Sleep Apnea Traits in
Hispanic/Latino Americans

Brian E. Cade'?, Han Chen®, Adrienne M. Stilp*, Kevin J. Gleason', Tamar Sofer*, Sonia Ancoli-Israef*®’, Raanan Arens®,
Graeme |. Bell®, Jennifer E. Below'®, Andrew C. Bjonnes'’, Sung Chun'""?, Matthew P. Conomos®, Daniel S. Evans™,
W. Craig Johnson®, Alexis C. Frazier-Wood'®, Jacqueline M. Lane'*'*'® Emma K. Larkin'’, Jose S. Loredo"®,

Wendy S. Post’, Alberto R. Ramos™, Ken Rice®, Jerome |, Rotter’’, Neomi A, Shah'™, Katie L. Stone'™, Kent D. Taylor”",
Timothy A. Thomton", Gregory J. Tranah™®, Chaolong Wang®#*, Phyllis C. Zee™, Craig L. Hanis'®, Shamil R. Sunyaev''#1%,
Sanjay R. Patel'?#%, Cathy C. Laurie®, Xiaofeng Zhu™®, Richa Saxena'-"*'®, Xihong Lin®, and Susan Rediine'?*®

Bruce S. Weir,' M. Larissa Avilés-Santa,'? George J. Papanicolaou,'? Thomas Lumley,’’ Adam A. Szpiro,’

Kari E. North,” Ken Rice,’ Timothy A. Thornton,’ and Cathy C. Laurie’*
ARTICLE

Genome-wide Association Study
of Platelet Count Identifies Ancestry-Specific
Loci in Hispanic/Latino Americans

Ursula M. Schick,’-*%1¢ Deeptl Jain,*'¢ Chanl J. Hodonsky,*'® Jean V. Morrison,* James P. Davis,®
Lisa Brown,* Tamar Sofer, Matthew P. Conomos,* Claudia Schurmann,®* Caitlin P. McHugh,*
Sarah C. Nelson,* Swarcoparani Vadlamudi,® Adrienne Stilp,* Anna Plantinga,* Leslie Baier,”
Stephanie A. Bien,’ Stephanie M. Gogarten,* Cecelia A. Laurie,* Kent D. Taylor,®” Yongmel Liu,'?
Paul L. Auer,’’ Nora Franceschinl,® Adam Szpiro,* Ken Rice,* Kathleen F. Kerr,* Jerome 1. Rotter,”
Robert L. Hanson,” George Papanicolaou,’? Stephen S. Rich, %4 Ruth LF. Loos, "5

Brian L. Browning,* Sharon R. Browning,* Bruce S. Weir,* Cathy C. Laurie,* Karen L. Mohlke,*
Kari E. North,*'¢ Timothy A. Thornton,*'¢ and Alex P. Reiner!.'%*

ASSOCIATION STUDIES ARTICLE

Genome-wide association study of dental caries in the
Hispanic Communities Health Study/Study of Latinos
(HCHS/SOL)

Jean Morrison?, Cathy C. Laurie?, Mary L. Marazita?3#, Anne E. Sanders>,
Steven Offenbacher®, Christian R. Salazar’.8, Matthew P. Conomos!,
Timothy Thornton?, Deepti Jain!, Cecelia A. Laurie?, Kathleen F. Kerr?,
George Papanicolaou?, Kent Taylor'’, Linda M. Kaste!?, James D. Beck®
and John R. Shaffer?*

ARTICLE

Control for Population Structure and Relatedness
for Binary Traits in Genetic Association Studies
via Logistic Mixed Models

Han Chen,'# Chaolong Wang,'.>.* Matthew P. Conomos,’ Adrienne M, Stilp,* Zilin Li,*-* Tamar Sofer,*
Adam A. Szpiro,” Wei Chen,® John M. Brehm,* Juan C. Celeddn,* Susan Redline,®
George J. Papanicolaou,” Timothy A. Thornton,* Cathy C. Laurie,’ Kenneth Rice,* and Xihong Lin'.*

ASSOCIATION STUDIES ARTICLE

Genome-wide association study of iron traits and
relation to diabetes in the Hispanic Community Health
Study/Study of Latinos (HCHS/SOL): potential genomic
intersection of iron and glucose regulation?



Alzheimer’s Disease Studies in Diverse Populations

Alzheimers

: . Dementia

Alzheimer's & Dementia 12 (2016) 233-2
ELSEVIER

Featured Article

Global and local ancestry in African-Americans: Implications for
Alzheimer’s disease risk

Timothy J. Hohman™", Jessica N. Cooke-Bailey"™', Christiane Reitz’, Gyungah Jun*",
Adam Naj*, Gary W. Beecham™, Zhi Liu"™, Regina M. Carney™", Jeffrey M. Vance™*,
Michael L. Cuccaro™", Ruchita Rajbhandary”™, Badri Narayan Vardarajan®, Li-San Wang",
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Variants in the ATP-Binding Cassette
Transporter (ABCA7), Apolipoprotein E €4,
and the Risk of Late-Onset Alzheimer Disease



GENESIS Software

« GENESIS: Statistical methods for analyzing
genetic data from samples with
population structure and/or relatedness

» R soffware package is available from
Bloconductor:

o https://bioconductor.org/packages/release/
bioc/html/GENESIS.himl

Conomos et al. (AJHG, 2016)
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